Abasic sites in DNA:: repair and biological consequences in Saccharomyces cerevisiae

被引:394
作者
Boiteux, S [1 ]
Guillet, M [1 ]
机构
[1] CEA, CNRS, DSV, Dept Radiobiol & Radiopathol,UMR 217, F-92265 Fontenay Aux Roses, France
关键词
apurinic/apyrimidinic sites; DNA single-strand breaks; DNA repair; Saccharomyces cerevisiae;
D O I
10.1016/j.dnarep.2003.10.002
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Apurinic/apyrimidinic (AP) sites are one of the most frequent spontaneous lesions in DNA. They are potentially mutagenic and lethal lesions that can block DNA replication and transcription. In addition, cleavage of AP sites by AP endonucleases or AP lyases generates DNA single-strand breaks (SSBs) with 5'- or 3'-blocked ends, respectively. Therefore, we suggest that AP sites and 3'- or 5'-blocked SSBs, we name "honorary AP sites", constitute a single class of lesions. In this review, we describe the different mechanisms used by the budding yeast Saccharomyces cerevisiae to remove or tolerate AP sites and related SSBs. In wild-type cells, AP sites are primarily repaired by the base excision repair (BER) pathway, with the nucleotide excision repair (NER) pathway as a back up activity. BER is initiated by one of the two AP endonucleases, Apn1 or Apn2. Three DNA N-glycosylases/AP lyases, Ntg1, Ntg2 and Ogg1, can also incise AP sites in DNA. Rad27. a structure specific endonuclease, is involved in the repair of 5'-blocked ends, whereas Apn1, Apn2 and Rad1-Rad10 are involved in the removal of 3'-blocked ends using their 3'-phosphodiesterase and 3'-flap endonuclease activities, respectively. AP sites can stall DNA replication forks, as well as they block in vitro DNA synthesis by DNA polymerase delta. Restart of stalled forks can occur through a recombination-associated pathway initiated by the Mus81-Mms4 endonuclease or mutagenic translesion DNA synthesis (TLS). The mutagenic bypass of AP sites is a two-polymerases affair with an inserter DNA polymerase (Poldelta, Poleta or Rev1) and an extender DNA polymerase (Pole). Under normal growth conditions, inactivation of Apn1, Apn2 and Rad1-Rad10 causes cell death. Therefore, the burden of spontaneous AP sites is not compatible with life, in the absence of excision repair pathways. These results in yeast demonstrate that AP sites are critical endogenous DNA damages that cause genetic instability and by analogy could be associated with degenerative pathologies in human. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 88 条
[1]  
Alseth I, 1999, MOL CELL BIOL, V19, P3779
[2]   SPECIFIC CLEAVAGE OF MODEL RECOMBINATION AND REPAIR INTERMEDIATES BY THE YEAST RAD1-RAD10 DNA ENDONUCLEASE [J].
BARDWELL, AJ ;
BARDWELL, L ;
TOMKINSON, AE ;
FRIEDBERG, EC .
SCIENCE, 1994, 265 (5181) :2082-2085
[3]   The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10 [J].
Bastin-Shanower, SA ;
Fricke, WM ;
Mullen, JR ;
Brill, SJ .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (10) :3487-3496
[4]  
Bennett RAO, 1999, MOL CELL BIOL, V19, P1800
[5]   Release of normal bases from intact DNA by a native DNA repair enzyme [J].
Berdal, KG ;
Johansen, RF ;
Seeberg, E .
EMBO JOURNAL, 1998, 17 (02) :363-367
[6]   CODING PROPERTIES OF POLY(DEOXYCYTIDYLIC ACID) TEMPLATES CONTAINING URACIL OR APYRIMIDINIC SITES - INVITRO MODULATION OF MUTAGENESIS BY DEOXYRIBONUCLEIC-ACID REPAIR ENZYMES [J].
BOITEUX, S ;
LAVAL, J .
BIOCHEMISTRY, 1982, 21 (26) :6746-6751
[7]   DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae [J].
Broomfield, S ;
Hryciw, T ;
Xiao, W .
MUTATION RESEARCH-DNA REPAIR, 2001, 486 (03) :167-184
[8]  
Cadet J, 1997, Rev Physiol Biochem Pharmacol, V131, P1
[9]   Mammalian DNA single-strand break repair: an X-ra(y)ted affair [J].
Caldecott, KW .
BIOESSAYS, 2001, 23 (05) :447-455
[10]   ROLE OF THE RAD1 AND RAD10 PROTEINS IN NUCLEOTIDE EXCISION-REPAIR AND RECOMBINATION [J].
DAVIES, AA ;
FRIEDBERG, EC ;
TOMKINSON, AE ;
WOOD, RD ;
WEST, SC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :24638-24641