On the background photochemistry of tropospheric ozone

被引:192
作者
Crutzen, PJ [1 ]
Lawrence, MG [1 ]
Pöschl, U [1 ]
机构
[1] Max Planck Inst Chem, D-55020 Mainz, Germany
关键词
D O I
10.1034/j.1600-0870.1999.t01-1-00010.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We present a largely tutorial overview of the main processes that influence the photochemistry of the background troposphere. This is mostly driven by the photolysis of ozone by solar ultraviolet radiation of wavelengths shorter than about 340 nm, resulting in production of excited O(D-1) atoms, whose reaction with water vapor produces OH radicals. In the background atmosphere the OH radicals mostly react with CO, and with CH4 and some of its oxidation products, which in turn are oxidized by OH. Depending on the availability of NO, catalysts, ozone may be produced or destroyed in amounts that are much greater than the downward flux of ozone from the stratosphere to the troposphere. Using the 3D chemical-transport model MATCH, global distributions and budget analyses are presented for tropospheric O-3, CH4, CO, and the "odd hydrogen" compounds OH, HO2 and H2O2. We show that OH is present in maximum concentrations in the tropics, and that most of the chemical breakdown of CO and CH4 also occurs in equatorial regions. We also split the troposphere into continental and marine regions, and show that there is a tremendous difference in photochemical O-3 and OH production for these regions, much larger than the difference between the northern hemisphere and southern hemisphere. Finally, we show the results from a numerical simulation in which we reduced the amount of ozone in the model stratosphere by a factor of 10 (which in turn reduced the flux of O-3 into the troposphere by about the same factor). Nevertheless, for summer conditions, model calculated O-3 mixing ratios below 5 km in the mid to high latitudes were about 70-90% as high as those calculated with the full downward flux of ozone from the stratosphere. This indicates that, at least under these conditions, O-3 concentrations in the lower troposphere are largely controlled by in situ photochemistry, with only a secondary influence from stratospheric influx.
引用
收藏
页码:123 / 146
页数:24
相关论文
共 58 条
[1]  
BATESON EV, 1995, J PHONETICS, V23, P101
[2]  
BAUGHCUM SL, 1994, CR4592 NASA
[3]   Regional and global tropopause fold occurrence and related ozone flux across the tropopause [J].
Beekmann, M ;
Ancellet, G ;
Blonsky, S ;
DeMuer, D ;
Ebel, A ;
Elbern, H ;
Hendricks, J ;
Kowol, J ;
Mancier, C ;
Sladkovic, R ;
Smit, HGJ ;
Speth, P ;
Trickl, T ;
VanHaver, P .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1997, 28 (1-3) :29-44
[4]   Global gridded inventories of anthropogenic emissions of sulfur and nitrogen [J].
Benkovitz, CM ;
Scholtz, MT ;
Pacyna, J ;
Tarrason, L ;
Dignon, J ;
Voldner, EC ;
Spiro, PA ;
Logan, JA ;
Graedel, TE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D22) :29239-29253
[5]   DISCUSSION OF CHEMISTRY OF SOME MINOR CONSTITUENTS IN STRATOSPHERE AND TROPOSPHERE [J].
CRUTZEN, P .
PURE AND APPLIED GEOPHYSICS, 1973, 106 (5-7) :1385-1399
[6]   BIOMASS BURNING IN THE TROPICS - IMPACT ON ATMOSPHERIC CHEMISTRY AND BIOGEOCHEMICAL CYCLES [J].
CRUTZEN, PJ ;
ANDREAE, MO .
SCIENCE, 1990, 250 (4988) :1669-1678
[7]   A TWO-DIMENSIONAL PHOTOCHEMICAL MODEL OF THE ATMOSPHERE .2. THE TROPOSPHERIC BUDGETS OF THE ANTHROPOGENIC CHLOROCARBONS CO, CH4, CH3CL AND THE EFFECT OF VARIOUS NOX SOURCES ON TROPOSPHERIC OZONE [J].
CRUTZEN, PJ ;
GIDEL, LT .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC11) :6641-6661
[8]   THE CHANGING PHOTOCHEMISTRY OF THE TROPOSPHERE [J].
CRUTZEN, PJ ;
ZIMMERMANN, PH .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1991, 43 (04) :136-151
[9]  
DeMore W.B., 1997, Chemical kinetics and photochemical data fo r use in stratospheric modeling
[10]   REACTION OF N2O5 ON TROPOSPHERIC AEROSOLS - IMPACT ON THE GLOBAL DISTRIBUTIONS OF NOX, O3, AND OH [J].
DENTENER, FJ ;
CRUTZEN, PJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D4) :7149-7163