Influence of Hole-Transport Layers and Donor Materials on Open-Circuit Voltage and Shape of I-V Curves of Organic Solar Cells

被引:259
作者
Tress, Wolfgang [1 ]
Leo, Karl [1 ]
Riede, Moritz [1 ]
机构
[1] Tech Univ Dresden, Inst Angew Photophys, D-01069 Dresden, Germany
关键词
LIGHT-EMITTING-DIODES; CHARGE-TRANSPORT; EFFICIENCY; RECOMBINATION; INJECTION; INTERFACE;
D O I
10.1002/adfm.201002669
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effect of injection and extraction barriers on flat heterojunction (FHJ) and bulk heterojunction (BHJ) organic solar cells is analyzed. The barriers are realized by a combination of p-type materials with HOMOs varying between -5.0 and -5.6 eV as hole-transport layer (HTL) and as donor in vacuum-evaporated multilayer p-i-metal small-molecule solar cells. The HTL/donor interface can be seen as a model for the influence of contacts in organic solar cells in general. Using drift-diffusion simulations we are well able to reproduce and explain the experimental I-V curves qualitatively. In FHJ solar cells the open-circuit voltage (V(oc)) is determined by the donor and is independent of the HTL. In BHJ solar cells, however, V(oc) decreases if injection barriers are present. This different behavior is caused by a blocking of the charge carriers at a spatially localized donor/acceptor heterojunction, which is only present in the FHJ solar cells. The forward current is dominated by the choice of HTL. An energy mismatch in the HOMOs leads to kinks in the I-V curves in the cases for which V(oc) is independent of the HTL.
引用
收藏
页码:2140 / 2149
页数:10
相关论文
共 37 条
[1]  
[Anonymous], 2009, PHYS SOLAR CELLS
[2]  
BAESSLER H, 1993, PHYS STATUS SOLIDI B, V175, P15
[3]   Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine [J].
Bailey-Salzman, Rhonda F. ;
Rand, Barry P. ;
Forrest, Stephen R. .
APPLIED PHYSICS LETTERS, 2007, 91 (01)
[4]   Interface electronic structure of organic semiconductors with controlled doping levels [J].
Blochwitz, J. ;
Fritz, T. ;
Pfeiffer, M. ;
Leo, K. ;
Alloway, D. M. ;
Lee, P. A. ;
Armstrong, N. R. .
ORGANIC ELECTRONICS, 2001, 2 (02) :97-104
[5]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
[6]  
2-W
[7]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[8]   Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells [J].
Cheyns, D. ;
Poortmans, J. ;
Heremans, P. ;
Deibel, C. ;
Verlaak, S. ;
Rand, B. P. ;
Genoe, J. .
PHYSICAL REVIEW B, 2008, 77 (16)
[9]   Efficiency limiting factors of organic bulk heterojunction solar cells identified by electrical impedance spectroscopy [J].
Glatthaar, M. ;
Riede, M. ;
Keegan, N. ;
Sylvester-Hvid, K. ;
Zimmermann, B. ;
Niggemann, M. ;
Hinsch, A. ;
Gombert, A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (05) :390-393
[10]   Solar cell efficiency tables (version 35) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (02) :144-150