Water-assisted oxo mechanism for heme metabolism

被引:47
作者
Kamachi, T [1 ]
Yoshizawa, K [1 ]
机构
[1] Kyushu Univ, Inst Mat Chem & Engn, Fukuoka 8128581, Japan
关键词
D O I
10.1021/ja051912+
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A mechanism of heme metabolism by heme oxygenase (HO) is discussed from B3LYP density functional theory calculations. The concerted OH group attack to the alpha-carbon by the iron-hydroperoxo species is investigated using a model with full protoporphyrin IX to confirm our previous conclusion that this species does not have sufficient oxidizing power for heme oxidation (J. Am. Chem. Soc. 2004, 126, 3672). Calculated activation energies and structures of the intermediates and transition state for this process remain unchanged from those for a small model with porphine in the previous study, which shows that the inclusion of the side chain of the porphyrin ring is not essential in describing the OH group transfer. The activation barrier for a direct oxo attack to the alpha-carbon by an iron-oxo model is calculated to be 49.8 kcal/mol, the barrier height of which looks very high for the enzymatic reaction under physiological conditions. This large activation energy is due to a highly bent porphyrin structure in the transition state. However, a bridging water molecule plays an important role in reducing the porphyrin distortion in the transition state, resulting in a remarkable decrease of the activation barrier to 13.9 kcal/mol. A whole-enzyme model with about 4000 atoms is constructed to elucidate functions of the protein environment in this enzymatic reaction using QM/MM calculations. The key water molecule is fixed in the protein environment to ensure the low-barrier and regioselective heme oxidation. A water-assisted oxo mechanism of heme oxidation by heme oxygenase is proposed from these calculational results.
引用
收藏
页码:10686 / 10692
页数:7
相关论文
共 56 条
[1]  
ARUOMA OI, 1989, J BIOL CHEM, V264, P20509
[2]   EXCHANGE HOLES IN INHOMOGENEOUS SYSTEMS - A COORDINATE-SPACE MODEL [J].
BECKE, AD ;
ROUSSEL, MR .
PHYSICAL REVIEW A, 1989, 39 (08) :3761-3767
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   Reduced oxy intermediate observed in D251N cytochrome P450(cam) [J].
Benson, DE ;
Suslick, KS ;
Sligar, SG .
BIOCHEMISTRY, 1997, 36 (17) :5104-5107
[5]   Autocatalytic radical reactions in physiological prosthetic heme modification [J].
Colas, C ;
de Montellano, PRO .
CHEMICAL REVIEWS, 2003, 103 (06) :2305-2332
[6]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[7]   A new ONIOM implementation in Gaussian98.: Part I.: The calculation of energies, gradients, vibrational frequencies and electric field derivatives [J].
Dapprich, S ;
Komáromi, I ;
Byun, KS ;
Morokuma, K ;
Frisch, MJ .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1999, 461 :1-21
[8]   Kinetic isotope effects on the rate-limiting step of heme oxygenase catalysis indicate concerted proton transfer/heme hydroxylation [J].
Davydov, R ;
Matsui, T ;
Fujii, H ;
Ikeda-Saito, M ;
Hoffman, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (52) :16208-16209
[9]   Hydroxylation of camphor by-reduced oxy-cytochrome P450cam: Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes [J].
Davydov, R ;
Makris, TM ;
Kofman, V ;
Werst, DE ;
Sligar, SG ;
Hoffman, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (07) :1403-1415
[10]   Catalytic mechanism of heme oxygenase through EPR and ENDOR of cryoreduced oxy-heme oxygenase and its Asp 140 mutants [J].
Davydov, R ;
Kofman, V ;
Fujii, H ;
Yoshida, T ;
Ikeda-Saito, M ;
Hoffman, BM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (08) :1798-1808