Silicon nanowire anode: Improved battery life with capacity-limited cycling

被引:91
作者
Chakrapani, Vidhya [1 ]
Rusli, Florencia [1 ]
Filler, Michael A. [1 ]
Kohl, Paul A. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
关键词
Silicon nanowire; Ionic liquid electrolyte; Quaternary ammonium TFSI; Limited capacity discharge; CORE-SHELL NANOWIRES; LITHIUM; ALLOY;
D O I
10.1016/j.jpowsour.2012.01.061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon nanowires grown on a stainless steel current collector were evaluated as Li ion battery anodes in an ionic liquid consisting of butyl-trimethyl ammonium bis(trifluoromethylsulfonyl)imide and lithium bis(trifluoromethanesulfonyl)imide. The electrodes showed good performance in the ionic liquid electrolyte with a stable discharge capacity of similar to 2000 mAh g(-1) and coulombic efficiency of 97% after 50 cycles. However, the large internal stresses caused by the volumetric expansion of the Si during lithiation limits the long-term cycle life of the battery in both ionic and organic electrolytes due in-part to the repeated disruption and reformation of the solid electrolyte interface layer on the Si. In contrast, when the same Si nanowire electrode was cycled at relatively shallow discharges, similar to those of carbon anodes, 320 mAh g(-1), the battery showed better performance with cycle life greater than 650 cycles and coulombic efficiency close to 100% in the ionic liquid electrolyte. Cycling at 1000 mAh g(-1) showed lifetimes in excess of 200 cycles in an organic electrolyte without cell degradation. The effect of Si doping, and amount of electrolyte in contact with the anode on the battery capacity and cycle life are also presented. (C) 2012 Published by Elsevier B.V.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 23 条
[1]   Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries [J].
Cao, Fei-Fei ;
Deng, Jun-Wen ;
Xin, Sen ;
Ji, Heng-Xing ;
Schmidt, Oliver G. ;
Wan, Li-Jun ;
Guo, Yu-Guo .
ADVANCED MATERIALS, 2011, 23 (38) :4415-+
[2]   Quaternary Ammonium Ionic Liquid Electrolyte for a Silicon Nanowire-Based Lithium Ion Battery [J].
Chakrapani, Vidhya ;
Rusli, Florencia ;
Filler, Micheal A. ;
Kohl, Paul A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (44) :22048-22053
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Structural and electrochemical study of the reaction of lithium with silicon nanowires [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Huggins, Robert A. ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :34-39
[5]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[6]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[7]   Structured silicon anodes for lithium battery applications [J].
Green, M ;
Fielder, E ;
Scrosati, B ;
Wachtler, M ;
Serra Moreno, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (05) :A75-A79
[8]   Alumina-Coated Patterned Amorphous Silicon as the Anode for a Lithium-Ion Battery with High Coulombic Efficiency [J].
He, Yu ;
Yu, Xiqian ;
Wang, Yanhong ;
Li, Hong ;
Huang, Xuejie .
ADVANCED MATERIALS, 2011, 23 (42) :4938-4941
[9]   Deformations in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space [J].
Hertzberg, Benjamin ;
Alexeev, Alexander ;
Yushin, Gleb .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (25) :8548-+
[10]   Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material [J].
Kim, Hyesun ;
Cho, Jaephil .
NANO LETTERS, 2008, 8 (11) :3688-3691