Texture modeling by multiple pairwise pixel interactions

被引:52
作者
Gimelfarb, GL
机构
[1] V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kiev-22, 252022
基金
匈牙利科学研究基金会;
关键词
texture; Markov/Gibbs random field; pairwise interaction; maximum likelihood estimate;
D O I
10.1109/34.544081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Markov random field model with a Gibbs probability distribution (GPD) is proposed for describing particular classes of grayscale images which can be called spatially uniform stochastic textures. The model takes into account only multiple short- and long-range pairwise interactions between the gray levels in the pixels. An effective learning scheme is introduced to recover structure and strength of the interactions using maximal likelihood estimates of the potentials in the GPD as desired parameters. The scheme is based on an analytic initial approximation of the estimates and their subsequent refinement by a stochastic approximation. Experiments in modeling natural textures show the utility of the proposed model.
引用
收藏
页码:1110 / 1114
页数:5
相关论文
共 13 条
[1]  
Averintsev M. B., 1972, PROBABILITY THEORY I, V17, P21
[2]  
BARNDORFFNIELSE.O, 1978, INFORMATION EXPONENT
[3]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[4]  
Brodatz P, 1966, TEXTURES PHOTOGRAPHI
[5]  
Dobrushin R. L., 1976, Proceedings of the 1975 IEEE-USSR Joint Workshop on Information Theory, P39
[6]  
Dubes R.C., 1989, J APPL STAT, V16, P131, DOI DOI 10.1080/02664768900000014
[7]   GIBBS RANDOM-FIELDS, COOCCURRENCES, AND TEXTURE MODELING [J].
ELFADEL, IM ;
PICARD, RW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (01) :24-37
[8]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[9]  
GIDAS B., 1993, MARKOV RANDOM FIELDS, P471
[10]  
JACOBSEN M, 1989, SCAND J STAT, V16, P335