TLR2 -: promiscuous or specific?: A critical re-evaluation of a receptor expressing apparent broad specificity

被引:318
作者
Zaehringer, Ulrich [1 ]
Lindner, Buko [1 ]
Inamura, Seiichi [1 ]
Heine, Holger [2 ]
Alexander, Christian [1 ]
机构
[1] Leibniz Ctr Med & Biosci, Res Ctr Borstel, Div Immunochem, D-23845 Borstel, Germany
[2] Leibniz Ctr Med & Biosci, Res Ctr Borstel, Div Innate Immun, D-23845 Borstel, Germany
关键词
lipoprotein; lipopeptide; lipoteichoic acid; pathogen-associated molecular patterns (PAMPs); peptidoglycan; TLR2;
D O I
10.1016/j.imbio.2008.02.005
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Of all pattern recognition receptors (PRR) in innate immunity, Toll-like receptor 2 (TLR2) recognizes the structurally broadest range of different bacterial compounds known as pathogen-associated molecular patterns (PAMPs). TLR2 agonists identified so far are lipopolysaccharides (LPSs) from different bacterial strains, lipoproteins, (synthetic) lipopeptides, lipoarabinomannans, lipomannans, glycosylphosphatidylinositol, lipoteichoic acids (LTA), various proteins including lipoproteins and glycoproteins, zymosan, and peptidoglycan (PG). Because these molecules are structurally diverse, it seems unlikely that TLR2 has the capability to react with all agonists to the same degree. The aim of this review is to identify and describe well-defined structure-function relationships for TLR2. Because of its biomedical importance and because its genetics and biochemistry are presently most completely known among all Gram-positive bacteria, we have chosen Staphylococcus aureus as a focus. Our data together with those reported by other groups reveal that only lipoproteins/lipopeptides are sensed at physiologically concentrations by TLR2 at picomolar levels. This finding implies that the activity of all other putative bacterial compounds so far reported as TLR2 agonists was most likely due to contaminating highly active natural lipoproteins and/or lipopeptides. (C) 2008 Elsevier GmbH. All rights reserved.
引用
收藏
页码:205 / 224
页数:20
相关论文
共 131 条
[1]  
ABRAMS A, 1958, J BIOL CHEM, V230, P949
[2]   Bacterial lipopolysaccharides and innate immunity [J].
Alexander, C ;
Rietschel, ET .
JOURNAL OF ENDOTOXIN RESEARCH, 2001, 7 (03) :167-202
[3]  
ALEXANDER C, 2007, SEPSIS NONINFECTIOUS
[4]   Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2 [J].
Aliprantis, AO ;
Yang, RB ;
Mark, MR ;
Suggett, S ;
Devaux, B ;
Radolf, JD ;
Klimpel, GR ;
Godowski, P ;
Zychlinsky, A .
SCIENCE, 1999, 285 (5428) :736-739
[5]   Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus [J].
Aravalli, RN ;
Hu, SX ;
Rowen, TN ;
Palmquist, JM ;
Lokensgard, JR .
JOURNAL OF IMMUNOLOGY, 2005, 175 (07) :4189-4193
[6]   A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins [J].
Babu, MM ;
Priya, ML ;
Selvan, AT ;
Madera, M ;
Gough, J ;
Aravind, L ;
Sankaran, K .
JOURNAL OF BACTERIOLOGY, 2006, 188 (08) :2761-2773
[7]   Cutting edge:: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection [J].
Bafica, Andre ;
Santiago, Helton Costa ;
Goldszmid, Romina ;
Ropert, Catherine ;
Gazzinelli, Ricardo T. ;
Sher, Alan .
JOURNAL OF IMMUNOLOGY, 2006, 177 (06) :3515-3519
[8]   Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2 [J].
Becker, I ;
Salaiza, N ;
Aguirre, M ;
Delgado, J ;
Carrillo-Carrasco, N ;
Kobeh, LG ;
Ruiz, A ;
Cervantes, R ;
Torres, AP ;
Cabrera, N ;
González, A ;
Maldonado, C ;
Isibasi, A .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2003, 130 (02) :65-74
[9]   THE STRUCTURE OF PNEUMOCOCCAL LIPOTEICHOIC ACID - IMPROVED PREPARATION, CHEMICAL AND MASS-SPECTROMETRIC STUDIES [J].
BEHR, T ;
FISCHER, W ;
PETERKATALINIC, J ;
EGGE, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 207 (03) :1063-1075
[10]   Not "molecular patterns" but molecules [J].
Beutler, B .
IMMUNITY, 2003, 19 (02) :155-156