A new class of random vector entropy estimators and its applications in testing statistical hypotheses

被引:111
作者
Goria, MN
Leonenko, NN
Mergel, VV
Inverardi, PLN [1 ]
机构
[1] Univ Trent, Dept Comp & Management Sci, I-38100 Trento, Italy
[2] Cardiff Univ, Sch Math, Cardiff CF24 4YH, S Glam, Wales
[3] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
entropy; multivariate density; estimator; goodness-of-fit test; testing independence; Monte Carlo methods;
D O I
10.1080/104852504200026815
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a new class of estimators of an unknown entropy of random vector. Its asymptotic unbiasedness and consistency are proved. Further, this class of estimators is used to build both goodness-of-fit and independence tests based on sample entropy. A simulation study indicates that the test involving the proposed entropy estimate has higher power than other well-known competitors under heavy tailed alternatives which are frequently used in many financial applications.
引用
收藏
页码:277 / 297
页数:21
相关论文
共 37 条
[1]   NONPARAMETRIC ESTIMATION OF ENTROPY FOR ABSOLUTELY CONTINUOUS DISTRIBUTIONS [J].
AHMAD, IA ;
LIN, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (03) :372-375
[2]  
[Anonymous], 1987, PROBLEMY PEREDACHI I
[3]  
[Anonymous], 1989, Maximum-entropy models in science and engineering
[4]  
AYEBO A, 2003, IN PRESS J PROBABILI
[5]  
Basharin G. P., 1959, THEOR PROBAB APPL, V4, P333
[6]  
Beirlant J, 1997, INT J MATH STAT SCI, V6, P17
[7]  
Dobrushin RL, 1958, TEOR VEROYA PRIMEN, V3, P462
[8]  
DUDEWICZ EI, 1981, JASA, V76, P974
[9]   Best asymptotic normality of the kernel density entropy estimator for smooth densities [J].
Eggermont, PPB ;
LaRiccia, VN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1321-1326
[10]  
ELBASSIOUNY AX, 1985, THEORETICAL PROBABIL, V33, P113