All-Polymer Solar Cells with 9.4% Efficiency from Naphthalene Diimide-Biselenophene Copolymer Acceptor

被引:88
作者
Kolhe, Nagesh B. [1 ,2 ]
Lee, Hyunjong [1 ,2 ]
Kuzuhara, Daiki [3 ]
Yoshimoto, Noriyuki [3 ]
Koganezawa, Tomoyuki [4 ]
Jenekhe, Samson A. [1 ,2 ]
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
[3] Iwate Univ, Fac Sci & Engn, 4-3-5 Ueda, Morioka, Iwate 0208551, Japan
[4] Japan Synchrotron Radiat Res Inst, Ind Applicat Div, Sayo, Hyogo 6795198, Japan
关键词
POWER CONVERSION EFFICIENCY; MOLECULAR-WEIGHT; PERFORMANCE; DONOR; OPTIMIZATION; MORPHOLOGY;
D O I
10.1021/acs.chemmater.8b03229
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report herein the development of high performance all-polymer solar cells (all-PSCs) based on a naphthalene diimide-biselenophene copolymer acceptor bearing 2-octyldodecyl side chains (PNDIBS). Inverted all-PSCs with up to 9.4% power conversion efficiency, high photocurrent (18.32 mA/cm(2)), and remarkably low optical band-gap energy loss (0.53 eV) were achieved by blending high molecular weight (M-n = 53.7 kDa) PNDIBS with a donor polymer PBDB-T that has a complementary absorption spectrum. In contrast, the corresponding lower M-n (28.4 kDa) PNDIBS devices had a maximum efficiency of 7.9%. The enhanced performance of the high-M-n devices is correlated with improved face-on molecular orientation, enhanced electron mobility, and reduced domain sizes of PNDIBS and balanced charge transport in the blend active layers. These findings demonstrate that PNDIBS acceptor polymer is promising for developing highly efficient all-PSCs while providing insights on the critical roles of size of side chains, molecular weight, and choice of the donor polymer component paired with the acceptor polymer.
引用
收藏
页码:6540 / 6548
页数:9
相关论文
共 46 条
[1]   Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic Solar Cells [J].
Ashraf, Raja Shahid ;
Meager, Iain ;
Nikolka, Mark ;
Kirkus, Mindaugas ;
Planells, Miquel ;
Schroeder, Bob C. ;
Holliday, Sarah ;
Hurhangee, Michael ;
Nielsen, Christian B. ;
Sirringhaus, Henning ;
McCulloch, Iain .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1314-1321
[2]   Recent research progress of polymer donor/polymer acceptor blend solar cells [J].
Benten, Hiroaki ;
Mori, Daisuke ;
Ohkita, Hideo ;
Ito, Shinzaburo .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (15) :5340-5365
[3]   A Synergetic Effect of Molecular Weight and Fluorine in All-Polymer Solar Cells with Enhanced Performance [J].
Chen, Shanshan ;
An, Yujin ;
Dutta, Gitish K. ;
Kim, Yiho ;
Zhang, Zhi-Guo ;
Li, Yongfang ;
Yang, Changduk .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (02)
[4]   Naphthalenedicarboximide- vs Perylenedicarboximide-Based Copolymers. Synthesis and Semiconducting Properties in Bottom-Gate N-Channel Organic Transistors [J].
Chen, Zhihua ;
Zheng, Yan ;
Yan, He ;
Facchetti, Antonio .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (01) :8-+
[5]   Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability [J].
Courtright, Brett A. E. ;
Jenekhe, Samson A. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (47) :26167-26175
[6]   All-Polymer Solar Cells with 3.3% Efficiency Based on Naphthalene Diimide-Selenophene Copolymer Acceptor [J].
Earmme, Taeshik ;
Hwang, Ye-Jin ;
Murari, Nishit M. ;
Subramaniyan, Selvam ;
Jenekhe, Samson A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (40) :14960-14963
[7]   Polymer donor-polymer acceptor (all-polymer) solar cells [J].
Facchetti, Antonio .
MATERIALS TODAY, 2013, 16 (04) :123-132
[8]   All-Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxane-Functionalized Side Chains with Efficiency over 10% [J].
Fan, Baobing ;
Ying, Lei ;
Zhu, Peng ;
Pan, Feilong ;
Liu, Feng ;
Chen, Junwu ;
Huang, Fei ;
Cao, Yong .
ADVANCED MATERIALS, 2017, 29 (47)
[9]   Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9% [J].
Fan, Baobing ;
Ying, Lei ;
Wang, Zhenfeng ;
He, Baitian ;
Jiang, Xiao-Fang ;
Huang, Fei ;
Cao, Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1243-1251
[10]   All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% [J].
Gao, Liang ;
Zhang, Zhi-Guo ;
Xue, Lingwei ;
Min, Jie ;
Zhang, Jianqi ;
Wei, Zhixiang ;
Li, Yongfang .
ADVANCED MATERIALS, 2016, 28 (09) :1884-1890