De Novo Enzyme Design Using Rosetta3

被引:229
作者
Richter, Florian [1 ,2 ]
Leaver-Fay, Andrew [3 ]
Khare, Sagar D. [1 ]
Bjelic, Sinisa [1 ]
Baker, David [1 ,2 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Interdisciplinary Program Biomol Struct & Design, Seattle, WA 98195 USA
[3] Univ N Carolina, Dept Biochem, Chapel Hill, NC 27599 USA
来源
PLOS ONE | 2011年 / 6卷 / 05期
关键词
TRIOSEPHOSPHATE ISOMERASE; COMPUTATIONAL DESIGN; STRUCTURE PREDICTION;
D O I
10.1371/journal.pone.0019230
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Rosetta de novo enzyme design protocol has been used to design enzyme catalysts for a variety of chemical reactions, and in principle can be applied to any arbitrary chemical reaction of interest, The process has four stages: 1) choice of a catalytic mechanism and corresponding minimal model active site, 2) identification of sites in a set of scaffold proteins where this minimal active site can be realized, 3) optimization of the identities of the surrounding residues for stabilizing interactions with the transition state and primary catalytic residues, and 4) evaluation and ranking the resulting designed sequences. Stages two through four of this process can be carried out with the Rosetta package, while stage one needs to be done externally. Here, we demonstrate how to carry out the Rosetta enzyme design protocol from start to end in detail using for illustration the triosephosphate isomerase reaction.
引用
收藏
页数:12
相关论文
共 17 条
[1]  
ADAM J, 2008, J AM CHEM SOC, V130, P15361
[2]   Improved beta-protein structure prediction by multilevel optimization of NonLocal strand pairings and local backbone conformation [J].
Bradley, Philip ;
Baker, David .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 65 (04) :922-929
[3]   How enzymes work: Analysis by modern rate theory and computer simulations [J].
Garcia-Viloca, M ;
Gao, J ;
Karplus, M ;
Truhlar, DG .
SCIENCE, 2004, 303 (5655) :186-195
[4]   Computational modeling of the catalytic reaction in triosephosphate isomerase [J].
Guallar, V ;
Jacobson, M ;
McDermott, A ;
Friesner, RA .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 337 (01) :227-239
[5]   Motif-directed flexible backbone design of functional interactions [J].
Havranek, James J. ;
Baker, David .
PROTEIN SCIENCE, 2009, 18 (06) :1293-1305
[6]   De novo computational design of retro-aldol enzymes [J].
Jiang, Lin ;
Althoff, Eric A. ;
Clemente, Fernando R. ;
Doyle, Lindsey ;
Rothlisberger, Daniela ;
Zanghellini, Alexandre ;
Gallaher, Jasmine L. ;
Betker, Jamie L. ;
Tanaka, Fujie ;
Barbas, Carlos F., III ;
Hilvert, Donald ;
Houk, Kendall N. ;
Stoddard, Barry L. ;
Baker, David .
SCIENCE, 2008, 319 (5868) :1387-1391
[7]   Optimal alignment for enzymatic proton transfer:: Structure of the Michaelis complex of triosephosphate isomerase at 1.2-Å resolution [J].
Jogl, G ;
Rozovsky, S ;
McDermott, AE ;
Tong, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (01) :50-55
[8]   Evolutionary Optimization of Computationally Designed Enzymes: Kemp Eliminases of the KE07 Series [J].
Khersonsky, Olga ;
Rothlisberger, Daniela ;
Dym, Orly ;
Albeck, Shira ;
Jackson, Colin J. ;
Baker, David ;
Tawfik, Dan S. .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 396 (04) :1025-1042
[9]   Evaluation and ranking of enzyme designs [J].
Kiss, Gert ;
Roethlisberger, Daniela ;
Baker, David ;
Houk, K. N. .
PROTEIN SCIENCE, 2010, 19 (09) :1760-1773
[10]  
Leaver-Fay A, 2011, METHOD ENZYMOL, P545, DOI [10.1016/B978-0-12-381270-4.00019-6, 10.1016/S0076-6879(11)87019-9]