Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes

被引:414
作者
Markstein, Michele [1 ,2 ]
Pitsouli, Chrysoula [1 ,2 ]
Villalta, Christians [1 ,2 ]
Celniker, Susan E. [3 ]
Perrimon, Norbert [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA
[3] Lawrence Berkeley Natl Lab, Dept Genome & Computat Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1038/ng.101
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.
引用
收藏
页码:476 / 483
页数:8
相关论文
共 49 条
[1]   Transgenic Xenopus laevis embryos can be generated using φC31 integrase [J].
Allen, BG ;
Weeks, DL .
NATURE METHODS, 2005, 2 (12) :975-979
[2]   The transformation of the model organism: a decade of developmental genetics [J].
Anderson, KV ;
Ingham, PW .
NATURE GENETICS, 2003, 33 (Suppl 3) :285-293
[3]  
Arnone MI, 2004, METHOD CELL BIOL, V74, P621
[4]   Site-specific transformation of Drosophila via φC31 integrase-mediated cassette exchange [J].
Bateman, Jack R. ;
Lee, Anne M. ;
Wu, C. -ting .
GENETICS, 2006, 173 (02) :769-777
[5]   An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases [J].
Bischof, Johannes ;
Maeda, Robert K. ;
Hediger, Monika ;
Karch, Francois ;
Basler, Konrad .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3312-3317
[6]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[7]   Using FlyAtlas to identify better Drosophila melanogaster models of human disease [J].
Chintapalli, Venkateswara R. ;
Wang, Jing ;
Dow, Julian A. T. .
NATURE GENETICS, 2007, 39 (06) :715-720
[8]   A 5' ELEMENT OF THE CHICKEN BETA-GLOBIN DOMAIN SERVES AS AN INSULATOR IN HUMAN ERYTHROID-CELLS AND PROTECTS AGAINST POSITION EFFECT IN DROSOPHILA [J].
CHUNG, JH ;
WHITELEY, M ;
FELSENFELD, G .
CELL, 1993, 74 (03) :505-514
[9]   Tissue-specific and reversible RNA interference in transgenic mice [J].
Dickins, Ross A. ;
McJunkin, Katherine ;
Hernando, Eva ;
Premsrirut, Prem K. ;
Krizhanovsky, Valery ;
Burgess, Darren J. ;
Kim, Sang Yong ;
Cordon-Cardo, Carlos ;
Zender, Lars ;
Hannon, Gregory J. ;
Lowe, Scott W. .
NATURE GENETICS, 2007, 39 (07) :914-921
[10]   A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila [J].
Dietzl, Georg ;
Chen, Doris ;
Schnorrer, Frank ;
Su, Kuan-Chung ;
Barinova, Yulia ;
Fellner, Michaela ;
Gasser, Beate ;
Kinsey, Kaolin ;
Oppel, Silvia ;
Scheiblauer, Susanne ;
Couto, Africa ;
Marra, Vincent ;
Keleman, Krystyna ;
Dickson, Barry J. .
NATURE, 2007, 448 (7150) :151-U1