Eigentaste: A constant time collaborative filtering algorithm

被引:879
作者
Goldberg, K
Roeder, T
Gupta, D
Perkins, C
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA
来源
INFORMATION RETRIEVAL | 2001年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
recommender systems; collaborative filtering; dimensionality reduction; jokes;
D O I
10.1023/A:1011419012209
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Eigentaste is a collaborative filtering algorithm that uses universal queries to elicit real-valued user ratings on a common set of items and applies principal component analysis (PCA) to the resulting dense subset of the ratings matrix. PCA facilitates dimensionality reduction for offline clustering of users and rapid computation of recommendations. For a database of n users, standard nearest-neighbor techniques require O(n) processing time to compute recommendations, whereas Eigentaste requires O(1) (constant) time. We compare Eigentaste to alternative algorithms using data from Jester, an online joke recommending system. Jester has collected approximately 2,500,000 ratings from 57,000 users. We use the Normalized Mean Absolute Error (NMAE) measure to compare performance of different algorithms. In the Appendix we use Uniform and Normal distribution models to derive analytic estimates of NMAE when predictions are random. On the Jester dataset, Eigentaste computes recommendations two orders of magnitude faster with no loss of accuracy. Jester is online at: http://eigentaste.berkeley.edu.
引用
收藏
页码:133 / 151
页数:19
相关论文
共 34 条
  • [1] [Anonymous], 1994, P 1994 ACM C COMP SU
  • [2] [Anonymous], HDB STAT
  • [3] Arrow K. J., 2012, SOCIAL CHOICE INDIVI
  • [4] BILLSUS D, 1998, P 15 INT C MACH LEAR, P46
  • [5] DASARATHY BV, 1991, NN PATTERN CLASSIFIC
  • [6] DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
  • [7] 2-9
  • [8] A similarity-based probability model for latent semantic indexing
    Ding, CHQ
    [J]. SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, : 58 - 65
  • [9] USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY
    GOLDBERG, D
    NICHOLS, D
    OKI, BM
    TERRY, D
    [J]. COMMUNICATIONS OF THE ACM, 1992, 35 (12) : 61 - 70
  • [10] Probabilistic latent semantic indexing
    Hofmann, T
    [J]. SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, : 50 - 57