Investigation on porous MnO microsphere anode for lithium ion batteries

被引:219
作者
Zhong, Kaifu [1 ]
Zhang, Bin [1 ]
Luo, Shihai [2 ]
Wen, Wen [2 ]
Li, Hong [1 ]
Huang, Xuejie [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Shanghai Synchrotron Radiat Facil, Pudong New Area, Shanghai 201204, Peoples R China
关键词
Manganese monoxide; Li-ion batteries; X-ray absorption near edge structure; Extended X-ray absorption fine structure; Thermodynamics; Kinetics; X-RAY-ABSORPTION; REACTIVITY MECHANISM; ELECTRODE MATERIALS; METAL FLUORIDES; HIGH-CAPACITY; LI-STORAGE; SPECTROSCOPY; OXIDES; ELECTROCHEMISTRY; NANOCOMPOSITES;
D O I
10.1016/j.jpowsour.2010.10.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MnO microspheres with and without carbon coating are prepared as anode materials for lithium ion batteries. The MnO microsphere material shows a reversible capacity of 800 mAh g(-1) and an initial efficiency of 71%. It can deliver 600 mAh g(-1) at a rate of 400 mA g(-1). Results of Mn K-edge X-ray absorption near-edge structure (XANES) spectra and extended X-ray absorption fine structure (EXAFS) confirm further the conversion reaction mechanism, indicate that pristine MnO is reduced to Mn after discharging to 0 V and part of reduced Mn(0) is not oxidized to Mn(2+) after charging to 3 V. This explains the origin of the initial irreversible capacity loss partially. The quasi open circuit voltage and the relationship between the current density and the overpotential are investigated. Both indicate that there is a significant voltage difference between the charging and discharging profiles even when the current density decreases to zero. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:6802 / 6808
页数:7
相关论文
共 29 条
[1]   Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C [J].
Badway, F ;
Pereira, N ;
Cosandey, F ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :A1209-A1218
[2]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[3]   In situ characterization of Mn(II) oxidation by spores of the marine Bacillus sp strain SG-1 [J].
Bargar, JR ;
Tebo, BM ;
Villinski, JE .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2000, 64 (16) :2775-2778
[4]   LIGHT-SCATTERING BY MAGNONS IN C0O, MNO, AND ALPHA-MNS [J].
CHOU, H ;
FAN, HY .
PHYSICAL REVIEW B, 1976, 13 (09) :3924-3938
[5]  
Débart A, 2001, J ELECTROCHEM SOC, V148, pA1266, DOI 10.1149/1.1409971
[6]   Enhanced potential of amorphous electrode materials:: Case study of RuO2 [J].
Delmer, Olga ;
Balaya, Palani ;
Kienle, Lorenz ;
Maier, Joachim .
ADVANCED MATERIALS, 2008, 20 (03) :501-+
[7]   First-Principles Investigation of the Li-Fe-F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium [J].
Doe, Robert E. ;
Persson, Kristin A. ;
Meng, Y. Shirley ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2008, 20 (16) :5274-5283
[8]   Spin-resolved NEXAFS from resonant X-ray scattering (RXS) [J].
Dräger, G ;
Kirchner, T ;
Bocharov, S ;
Kao, CC .
JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 (02) :398-400
[9]  
Dreyer W, 2010, NAT MATER, V9, P448, DOI [10.1038/nmat2730, 10.1038/NMAT2730]
[10]   Ab initio and experimental pre-edge investigations of the Mn K-edge XANES in oxide-type materials -: art. no. 155109 [J].
Farges, F .
PHYSICAL REVIEW B, 2005, 71 (15)