Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study

被引:175
作者
Ding, Zijing [1 ]
Zhao, Liang [1 ]
Suo, Liumin [1 ]
Jiao, Yang [1 ]
Meng, Sheng [1 ]
Hu, Yong-Sheng [1 ]
Wang, Zhaoxiang [1 ]
Chen, Liquan [1 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
关键词
AB-INITIO; ELECTRONIC-PROPERTIES; LIFEPO4; GROWTH;
D O I
10.1039/c1cp21513b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the effects of carbon coating, with and without nitrogen-dopants, on the electrochemical performance of a promising anode material Li4Ti5O12 (LTO) in lithium ion battery applications. The comparative experimental results show that LTO samples coated with nitrogen-doped carbon derived from pyridine and an ionic liquid exhibit significant improvements in rate capability and cycling performance compared with a LTO sample coated by carbon derived from toluene and the pristine LTO sample. For the first time, we construct an atomistic model for the interface between the lithium transition metal oxide and carbon coating layers. Our first-principles calculations based on density functional theory reveal that at this interface there is strong binding between the graphene coating layer and the Ti-terminated LTO surface, which significantly reduces the chemical activity of LTO surfaces and stabilizes the electrode/electrolyte interface, providing a clue to solve the swelling problem for LTO-based batteries. More importantly, electron transfer from the LTO surface to graphene greatly improves the electric conductivity of the interface. Nitrogen-dopants in graphene coatings further increase the interfacial stability and electric conductivity, which is beneficial to the electrochemical performance in energy storage applications.
引用
收藏
页码:15127 / 15133
页数:7
相关论文
共 35 条
[1]   Anisotropy of electronic and ionic transport in LiFePO4 single crystals [J].
Amin, Ruhul ;
Balaya, Palani ;
Maier, Joachim .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) :A13-A16
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Size Effects in the Li4+xTi5O12 Spinel [J].
Borghols, W. J. H. ;
Wagemaker, M. ;
Lafont, U. ;
Kelder, E. M. ;
Mulder, F. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (49) :17786-17792
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries [J].
Chen, CH ;
Vaughey, JT ;
Jansen, AN ;
Dees, DW ;
Kahaian, AJ ;
Goacher, T ;
Thackeray, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (01) :A102-A104
[7]   Porous olivine composites synthesized by sol-gel technique [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Remskar, M ;
Hanzel, D ;
Goupil, JM ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :274-280
[8]   A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications [J].
Du Pasquier, A ;
Plitz, I ;
Menocal, S ;
Amatucci, G .
JOURNAL OF POWER SOURCES, 2003, 115 (01) :171-178
[9]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[10]   Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J].
Huang, H ;
Yin, SC ;
Nazar, LF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (10) :A170-A172