Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs

被引:107
作者
Caffarelli, LA [1 ]
Feldman, M
McCann, RJ
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
关键词
Monge-Kantorovich mass transportation; resource allocation; optimal map; optimal coupling; infinite dimensional linear programming; dual problem; Wasserstein distance;
D O I
10.1090/S0894-0347-01-00376-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 26
页数:26
相关论文
共 24 条
[1]  
ALBERTI G, 2000, SCUOL NORM SUP WORKS
[2]  
AMBROSIO L, LECTURE NOTES MATH S
[3]  
[Anonymous], 1998, MASS TRANSPORTATION
[4]  
[Anonymous], 1979, P STEKLOV I MATH+
[5]   SHARP UNIFORM CONVEXITY AND SMOOTHNESS INEQUALITIES FOR TRACE NORMS [J].
BALL, K ;
CARLEN, EA ;
LIEB, EH .
INVENTIONES MATHEMATICAE, 1994, 115 (03) :463-482
[6]  
CAFFARELLI LA, 1996, LECT NOTES PURE APPL, V177, P29
[7]  
Evans L. C, 2010, Partial Differential Equations, V19
[8]  
Evans L. C., 2018, Measure Theory and Fine Properties of Functions
[9]  
Evans L. C., 1997, CURRENT DEV MATH, P26
[10]  
Evans LC, 1999, MEM AM MATH SOC, V137, P1