Stochastic versions of the EM algorithm: An experimental study in the mixture case

被引:127
作者
Celeux, G
Chauveau, D
Diebolt, J
机构
[1] UNIV MARNE LA VALLEE,EQUIPE ANAL & MATH APPL,F-93166 NOISY LE GRAND,FRANCE
[2] UNIV GRENOBLE 1,CNRS,F-38041 GRENOBLE,FRANCE
关键词
stochastic iterative algorithms; incomplete daa; maximum likelihood estimation; ergodic Markov chain;
D O I
10.1080/00949659608811772
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compare three different stochastic versions of the EM algorithm: The Stochastic EM algorithm (SEM), the ''Simulated Annealing'' EM algorithm (SAEM) and the Monte Carlo EM algorithm (MCEM). We focus particularly on the mixture of distributions problem. In this context, we investigate the practical behaviour of these algorithms through intensive Monte Carlo numerical simulations and a real data study. We show that, for some particular mixture situations, the SEM algorithm is almost always preferable to the EM and ''simulated annealing'' versions SAEM and MCEM. For some severely overlapping mixtures, however, none of these algorithms can be confidently used. Then, SEM can be used as an efficient data exploratory tool for locating significant maxima of the likelihood function. In the real data case, we show that the SEM stationary distribution provides a contrasted view of the loglikelihood by emphasizing sensible maxima.
引用
收藏
页码:287 / 314
页数:28
相关论文
共 27 条
  • [1] [Anonymous], 1985, Computational Statistics Quarterly, DOI DOI 10.1155/2010/874592
  • [2] BASFORD KE, 1985, APPL STAT-J ROY ST C, V34, P282
  • [3] ALMOST SURE CONVERGENCE OF A CLASS OF STOCHASTIC ALGORITHMS
    BISCARAT, JC
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 50 (01) : 83 - 99
  • [4] BRONIATOWSKI M, 1993, DATA ANAL INFORMATIC, V3, P359
  • [5] Celeux G., 1992, STOCH INT J PROBAB S, V41, P119, DOI DOI 10.1080/17442509208833797
  • [6] Celeux G., 1993, J STAT COMPUT SIM, V47, P127, DOI DOI 10.1080/00949659308811525
  • [7] CELEUX G, 1991, CAHIERS CERO, V32, P135
  • [8] CELEUX G, 1986, 563 INRIA
  • [9] CHAUVEAU D, 1992, REV STAT APPL, V40, P67
  • [10] CHAVEAU D, 1995, J STAT PLANN INFEREN, V46, P1