1,3-Diamido-calix[4]arene Conjugates of Amino Acids: Recognition of -COOH Side Chain Present in Amino Acids, Peptides, and Proteins by Experimental and Computational Studies

被引:39
作者
Acharya, Amitabha [1 ]
Ramanujam, Balaji [1 ]
Chinta, Jugun Prakash [1 ]
Rao, Chebrolu P. [1 ]
机构
[1] Indian Inst Technol, Bioinorgan Lab, Dept Chem, Bombay 400076, Maharashtra, India
关键词
SELECTIVE RECOGNITION; CLUSTER FORMATION; COMPLEXATION; DERIVATIVES; SERINE;
D O I
10.1021/jo101759f
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Lower rim 1,3-diamido conjugates of calix[4]arene have been synthesized and characterized, and the structures of some of these have been established by single crystal XRD. The amido-calix conjugates possessing a terminal -COOH moiety have been shown to exhibit recognition toward guest molecules possessing -COOH moiety, viz., Asp, Glu, and reduced and oxidized glutathione (GSH, GSSG), by switch-on fluorescence in aqueous acetonitrile and methanol solutions when compared to the control molecules via forming a 1:1 complex. The complex formed has been shown by mass spectrometry, and the structural features of the complexes were derived on the basis of DFT computations. The association constants observed for the recognition of Asp/Glu by Phe-calix conjugate, viz., 532/676 M-1, are higher than that reported for the recognition of Val, Leu, Phe, His, and Trp (16-63 M-1) by a water-soluble calixarene (Arena, G., et al. Tetrahedron Lett. 1999, 40, 1597). For this recognition, there should be a free -COOH moiety from the guest molecule. AFM, SEM, and DLS data exhibited spherical particles with a hundred-fold reduction in the size of the complexes when compared to the particles of the precursors. These spherical particles have been computationally modeled to possess hexameric species reminiscent of the hexameric micellar structures shown for a Ag+ complex of a calix[6]arene reported in the literature (Houmadi, S., et al. Langmuir 2007, 23, 4849). Both AFM and TEM studies demonstrated the formation of nanospheres in the case of GSH-capped Ag nanoparticles in interaction with the amido-calix conjugate that possesses terminal -COOH moiety. The AFM studies demonstrated in this paper have been very well applied to albumin proteins to differentiate the aggregational behavior and nanostructural features exhibited by the complexes of proteins from those of the uncomplexed ones. To our knowledge, this is the first report wherein a amido-calix[4]arene conjugate and its amino acid/peptide/protein complexes have been differentiated on the basis of spectroscopy and microscopy studies followed by species modeling by computations.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 43 条
[1]   Experimental and computational studies of the recognition of amino acids by galactosyl-imine and -amine derivatives: An attempt to understand the lectin-carbohydrate interactions [J].
Ahuja, Rohit ;
Singhal, Nitin K. ;
Ramanujam, Balaji ;
Ravikumar, Maddula ;
Rao, Chebrolu P. .
JOURNAL OF ORGANIC CHEMISTRY, 2007, 72 (09) :3430-3442
[2]  
[Anonymous], 2007, HYPERCHEM 8 0 4
[3]   Calix[4]arene based alpha-aminophosphonates: Novel carriers for zwitterionic amino acids transport. [J].
Antipin, IS ;
Stoikov, II ;
Pinkhassik, EM ;
Fitseva, NA ;
Stibor, I ;
Konovalov, AI .
TETRAHEDRON LETTERS, 1997, 38 (33) :5865-5868
[4]   Complexation of native L-α-aminoacids by water soluble calix[4]arenes [J].
Arena, G ;
Contino, A ;
Gulino, FG ;
Magrì, A ;
Sansone, F ;
Sciotto, D ;
Ungaro, R .
TETRAHEDRON LETTERS, 1999, 40 (08) :1597-1600
[5]   A chemosensor array for the colorimetric identification of 20 natural amino acids [J].
Buryak, A ;
Severin, K .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (11) :3700-3701
[6]   Complexation of some amine compounds by macrocyclic receptors [J].
Buschmann, HJ ;
Mutihac, L ;
Jansen, K .
JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, 2001, 39 (1-2) :1-11
[7]  
Collins E.M., 1991, J CHEM SOC P1, V12, P3137
[8]   Chiroselective self-directed octamerization of serine: Implications for homochirogenesis [J].
Cooks, RG ;
Zhang, DX ;
Koch, KJ ;
Gozzo, FC ;
Eberlin, MN .
ANALYTICAL CHEMISTRY, 2001, 73 (15) :3646-3655
[9]  
Dey M., UNPUB
[10]  
Douteau-Guevel N, 1998, J PHYS ORG CHEM, V11, P693, DOI 10.1002/(SICI)1099-1395(1998100)11:10<693::AID-POC18>3.0.CO