Eat me and "don't eat me" signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system

被引:162
作者
Elward, K [1 ]
Gasque, P [1 ]
机构
[1] Univ Wales, Coll Med, Dept Med Biochem & Immunol, BIIG, Cardiff CF14 4XN, S Glam, Wales
关键词
complement; innate immunity; apoptosis; phagocytosis; neuroinflammation; brain repair; neurodegeneration;
D O I
10.1016/S0161-5890(03)00109-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A full innate immune system (e.g. complement system, scavenger receptors, Toll-like receptors (TLR)) has been described in the CNS and is thought to be an extremely efficient army designed to fight against invading pathogens and toxic cell debris such as apoptotic cells and amyloid fibrils. The binding of soluble or secreted innate immune molecules on pathogen-associated molecular patterns (PAMPs) as well as apoptotic cell-associated molecular patterns (ACAMPs) provide several "eat me" signals to promote the safe disposal of the intruders by professional and amateur phagocytes. These patterns are deciphered by receptors (pattern recognition receptors, PRRs; e.g. CR3) that control phagocytosis and associated inflammatory response depending on the meaning of these signals. Importantly, in order to avoid excessive collateral damage of surrounding cells, it is increasingly evident that "don't eat me" signals (coined herein as self-associated molecular patterns, SAMPs; e.g. complement regulatory proteins, CD200) are of paramount importance to signal a robust anti-inflammatory response and promote tissue repair. Further knowledge of the innate immune response in the CNS will greatly help to delineate the novel therapeutic routes to protect from CNS inflammation and neurodegeneration. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 82 条
[1]   Mechanisms of phagocytosis in macrophages [J].
Aderem, A ;
Underhill, DM .
ANNUAL REVIEW OF IMMUNOLOGY, 1999, 17 :593-623
[2]   Cloning and characterization of human Siglec-11 - A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia [J].
Angata, T ;
Kerr, SC ;
Greaves, DR ;
Varki, NM ;
Crocker, PR ;
Varki, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :24466-24474
[3]   CD200 and membrane protein E interactions in the control of myeloid cells [J].
Barclay, AN ;
Wright, GJ ;
Brooke, G ;
Brown, MH .
TRENDS IN IMMUNOLOGY, 2002, 23 (06) :285-290
[4]   Complement in central nervous system inflammation [J].
Barnum, SR .
IMMUNOLOGIC RESEARCH, 2002, 26 (1-3) :7-13
[5]   Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1 [J].
Baruch, DI ;
Gormley, JA ;
Ma, C ;
Howard, RJ ;
Pasloske, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3497-3502
[6]   The major receptor for C-reactive protein on leukocytes is Fcγ receptor II [J].
Bharadwaj, D ;
Stein, MP ;
Volzer, M ;
Mold, C ;
Du Clos, TW .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 190 (04) :585-590
[7]   Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity [J].
Bickerstaff, MCM ;
Botto, M ;
Hutchinson, WL ;
Herbert, J ;
Tennent, GA ;
Bybee, A ;
Mitchell, DA ;
Cook, HT ;
Butler, PJG ;
Walport, MJ ;
Pepys, MB .
NATURE MEDICINE, 1999, 5 (06) :694-697
[8]   Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies [J].
Botto, M ;
Dell'Agnola, C ;
Bygrave, AE ;
Thompson, EM ;
Cook, HT ;
Petry, F ;
Loos, M ;
Pandolfi, PP ;
Walport, MJ .
NATURE GENETICS, 1998, 19 (01) :56-59
[9]  
BOWNESS P, 1994, Q J MED, V87, P455
[10]  
BREVIARIO F, 1992, J BIOL CHEM, V267, P22190