Chemically charging the pore constriction opens the mechanosensitive channel MscL

被引:84
作者
Yoshimura, K
Batiza, A
Kung, C
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo 1130033, Japan
[2] Univ Wisconsin, Mol Biol Lab, Madison, WI 53706 USA
关键词
D O I
10.1016/S0006-3495(01)76192-9
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
MscL is a bacterial mechanosensitive channel that protects the cell from osmotic downshock. We have previously shown that substitution of a residue that resides within the channel pore constriction, MscL's Gly-22, with all other 19 amino acids affects channel gating according to the hydrophobicity of the substitution (K. Yoshimura, A. Batiza, M. Schroeder, P. Blount, and C. Kung, 1999, Biophys. J. 77:1960-1972). Here, we first make a mild substitution, G22C, and then attach methanethiosulfonate (MTS) reagents to the cysteine under patch clamp. Binding MTS reagents that are positively charged ([2-(trimethylammonium)ethyl] methanethiosulfonate and 2-aminoethyl methanethiosulfonate) or negatively charged (sodium (2-sulfonatoethyl)methanethiosulfonate) causes MscL to gate spontaneously, even when no tension is applied. In contrast, the polar 2-hydroxyethyl methanethiosulfonate halves the threshold, and the hydrophobic methyl methanethiolsulfonate increases the threshold. These observations indicate that residue 22 is in a hydrophobic environment before gating and in a hydrophilic environment during opening to a substate, a finding consistent with our previous study. In addition, we have found that cysteine 22 is accessible to reagents from the cytoplasmic side only when the channel is opened whereas it is accessible from the periplasmic side even in the closed state. These results support the view that exposure of hydrophobic surfaces to a hydrophilic environment during channel opening serves as the barrier to gating.
引用
收藏
页码:2198 / 2206
页数:9
相关论文
共 39 条
[1]   Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells [J].
Ajouz, B ;
Berrier, C ;
Garrigues, A ;
Besnard, M ;
Ghazi, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (41) :26670-26674
[2]   ACETYLCHOLINE-RECEPTOR CHANNEL STRUCTURE PROBED IN CYSTEINE-SUBSTITUTION MUTANTS [J].
AKABAS, MH ;
STAUFFER, DA ;
XU, M ;
KARLIN, A .
SCIENCE, 1992, 258 (5080) :307-310
[3]  
BARGMANN CI, 1994, CELL, V78, P729
[4]   Channel gate! Tension, leak and disclosure [J].
Batiza, AF ;
Rayment, I ;
Kung, C .
STRUCTURE, 1999, 7 (05) :R99-R103
[5]   Elongation factor Tu and DnaK are transferred from the cytoplasm to the periplasm of Escherichia coli during osmotic downshock presumably via the mechanosensitive channel MscL [J].
Berrier, C ;
Garrigues, A ;
Richarme, G ;
Ghazi, A .
JOURNAL OF BACTERIOLOGY, 2000, 182 (01) :248-251
[6]   Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure [J].
Berrier, C ;
Besnard, M ;
Ajouz, B ;
Coulombe, A ;
Ghazi, A .
JOURNAL OF MEMBRANE BIOLOGY, 1996, 151 (02) :175-187
[7]  
Blount P, 1999, Methods Enzymol, V294, P458
[8]   Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli [J].
Blount, P ;
Sukharev, SI ;
Schroeder, MJ ;
Nagle, SK ;
Kung, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (21) :11652-11657
[9]   Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress [J].
Blount, P ;
Schroeder, MJ ;
Kung, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32150-32157
[10]   Structure of the MscL homolog from Mycobacterium tuberculosis:: A gated mechanosensitive ion channel [J].
Chang, G ;
Spencer, RH ;
Lee, AT ;
Barclay, MT ;
Rees, DC .
SCIENCE, 1998, 282 (5397) :2220-2226