Omega-3 fatty acids supplementation restores mechanisms that maintain brain Homeostasis in traumatic brain injury

被引:115
作者
Wu, Aiguo
Ying, Zhe
Gomez-Pinilla, Fernando
机构
[1] Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Brain Injury Res Ctr, Div Neurosurg, Los Angeles, CA USA
关键词
hippocampus; omega-3 fatty acids; oxidative stress; Sir2; alpha;
D O I
10.1089/neu.2007.0313
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Traumatic brain injury TBI) produces a state of vulnerability that reduces the brain capacity to cope with secondary insults. The silent information regulator 2 (Sir2) has been implicated with maintaining genomic stability and cellular homeostasis under challenging situation. Here we explore the possibility that the action of Sir2 alpha (mammalian Sir2) in the brain can extend to serve neuronal plasticity. We provide novel evidence showing that mild TBI reduces the expression of Sir2a in the hippocampus, in proportion to increased levels of protein oxidation. In addition, we show that dietary supplementation of omega-3 fatty acids that ameliorates protein oxidation was effective to reverse the reduction of Sir2a level in injured rats. Given that oxidative stress is a subproduct of dysfunctional energy homeostasis, we measured AMP-activated protein kinase (AMPK) and phosphorylated-AMPK (p-AMPK) to have an indication of the energy status of cells. Hippocampal levels of total and phosphorylated AMPK were reduced after TBI and levels were normalized by omega-3 fatty acts supplements. Further, we found that TBI reduced ubiquitous mitochondrial creatine kinase (uMtCK), an enzyme implicated in the energetic regulation of Ca2+-pumps and in the maintenance of Ca2+ -homeostasis. Omega-3 fatty acids supplements normalized the levels of uMtCK after lesion. Furthermore, we found that the correlation between Sir2a and AMPK or p-AMPK was disrupted by TBI, but restored by omega-3 fatty acids supplements. Our results suggest that TBI may compromise neuronal protective mechanisms by involving the action of Sir2a. In addition, results show the capacity of omega-3 fatty acids to counteract some of the effects of TBI by normalizing levels of molecular systems associated with energy homeostasis.
引用
收藏
页码:1587 / 1595
页数:9
相关论文
共 17 条
[1]   Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae [J].
Anderson, RM ;
Bitterman, KJ ;
Wood, JG ;
Medvedik, O ;
Sinclair, DA .
NATURE, 2003, 423 (6936) :181-185
[2]   Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration [J].
Araki, T ;
Sasaki, Y ;
Milbrandt, J .
SCIENCE, 2004, 305 (5686) :1010-1013
[3]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015
[4]   Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice [J].
Cheng, HL ;
Mostoslavsky, R ;
Saito, S ;
Manis, JP ;
Gu, YS ;
Patel, P ;
Bronson, R ;
Appella, E ;
Alt, FW ;
Chua, KF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10794-10799
[5]   Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J].
Cohen, HY ;
Miller, C ;
Bitterman, KJ ;
Wall, NR ;
Hekking, B ;
Kessler, B ;
Howitz, KT ;
Gorospe, M ;
de Cabo, R ;
Sinclair, DA .
SCIENCE, 2004, 305 (5682) :390-392
[6]   Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity [J].
Daitoku, H ;
Hatta, M ;
Matsuzaki, H ;
Aratani, S ;
Ohshima, T ;
Miyagishi, M ;
Nakajima, T ;
Fukamizu, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (27) :10042-10047
[7]  
Guarente L, 2000, GENE DEV, V14, P1021
[8]   Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress [J].
Kops, GJPL ;
Dansen, TB ;
Polderman, PE ;
Saarloos, I ;
Wirtz, KWA ;
Coffer, PJ ;
Huang, TT ;
Bos, JL ;
Medema, RH ;
Burgering, BMT .
NATURE, 2002, 419 (6904) :316-321
[9]   Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae [J].
Lin, SJ ;
Defossez, PA ;
Guarente, L .
SCIENCE, 2000, 289 (5487) :2126-2128
[10]   Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway [J].
Nemoto, S ;
Finkel, T .
SCIENCE, 2002, 295 (5564) :2450-2452