A robust optmization perspective on stochastic programming

被引:230
作者
Chen, Xin [1 ]
Sim, Melvyn [2 ,3 ]
Sun, Peng [4 ]
机构
[1] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[2] Natl Univ Singapore, NUS Business Sch, Singapore 117548, Singapore
[3] Singapore MIT Alliance SMA, Singapore 117548, Singapore
[4] Duke Univ, Fuqua Sch Business, Durham, NC 27708 USA
关键词
D O I
10.1287/opre.1070.0441
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce an approach for constructing uncertainty sets for robust optimization using new deviation measures for random variables termed the forward and backward deviations. These deviation measures capture distributional asymmetry and lead to better approximations of chance constraints. Using a linear decision rule, we also propose a tractable approximation approach for solving a class of multistage chance-constrained stochastic linear optimization problems. An attractive feature of the framework is that we convert the original model into a second-order cone program, which is computationally tractable both in theory and in practice. We demonstrate the framework through an application of a project management problem with uncertain activity completion time.
引用
收藏
页码:1058 / 1071
页数:14
相关论文
共 29 条
[1]   Strong formulations of robust mixed 0-1 programming [J].
Atamtuerk, Alper .
MATHEMATICAL PROGRAMMING, 2006, 108 (2-3) :235-250
[2]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[3]   Robust solutions of Linear Programming problems contaminated with uncertain data [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :411-424
[4]   Retailer-supplier flexible commitments contracts: A robust optimization approach [J].
Ben-Tal, Aharon ;
Golany, Boaz ;
Nemirovski, Arkadi ;
Vial, Jean-Philippe .
Manufacturing and Service Operations Management, 2005, 7 (03) :248-271
[5]   Adjustable robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Goryashko, A ;
Guslitzer, E ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2004, 99 (02) :351-376
[6]   Robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Nemirovski, A .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :1-13
[7]   Tractable approximations to robust conic optimization problems [J].
Bertsimas, D ;
Sim, M .
MATHEMATICAL PROGRAMMING, 2006, 107 (1-2) :5-36
[8]   A robust optimization approach to inventory theory [J].
Bertsimas, D ;
Thiele, A .
OPERATIONS RESEARCH, 2006, 54 (01) :150-168
[9]   Robust linear optimization under general norms [J].
Bertsimas, D ;
Pachamanova, D ;
Sim, M .
OPERATIONS RESEARCH LETTERS, 2004, 32 (06) :510-516
[10]   The price of robustness [J].
Bertsimas, D ;
Sim, M .
OPERATIONS RESEARCH, 2004, 52 (01) :35-53