A Reconfigurable Streaming Deep Convolutional Neural Network Accelerator for Internet of Things

被引:161
作者
Du, Li [1 ,2 ]
Du, Yuan [1 ,2 ]
Li, Yilei [3 ]
Su, Junjie [2 ]
Kuan, Yen-Cheng [4 ]
Liu, Chun-Chen [1 ,2 ]
Chang, Mau-Chung Frank [1 ,5 ]
机构
[1] Univ Calif Los Angeles, High Speed Elect Lab, Los Angeles, CA 90095 USA
[2] Kneron Inc, San Diego, CA 92121 USA
[3] Novumind Inc, Santa Clara, CA 95054 USA
[4] Natl Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu 30010, Taiwan
[5] Natl Chiao Tung Univ, Hsinchu 30010, Taiwan
关键词
Convolution neural network; deep learning; hardware accelerator; IoT;
D O I
10.1109/TCSI.2017.2735490
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural network (CNN) offers significant accuracy in image detection. To implement image detection using CNN in the Internet of Things (IoT) devices, a streaming hardware accelerator is proposed. The proposed accelerator optimizes the energy efficiency by avoiding unnecessary data movement. With unique filter decomposition technique, the accelerator can support arbitrary convolution window size. In addition, max-pooling function can be computed in parallel with convolution by using separate pooling unit, thus achieving throughput improvement. A prototype accelerator was implemented in TSMC 65-nm technology with a core size of 5 mm(2). The accelerator can support major CNNs and achieve 152GOPS peak throughput and 434GOPS/W energy efficiency at 350 mW, making it a promising hardware accelerator for intelligent IoT devices.
引用
收藏
页码:198 / 208
页数:11
相关论文
共 18 条
[1]  
[Anonymous], PROC CVPR IEEE
[2]  
[Anonymous], P INT C INT SCI BIG
[3]  
[Anonymous], THESIS
[4]  
[Anonymous], INT C LEARN REPR
[5]  
[Anonymous], 2015, 32 ICML
[6]  
[Anonymous], CLASSIFY IMAGES WITH
[7]  
[Anonymous], HARDW IP DEM
[8]  
Chen YH, 2016, ISSCC DIG TECH PAP I, V59, P262, DOI 10.1109/ISSCC.2016.7418007
[9]  
Hameed R, 2010, CONF PROC INT SYMP C, P37, DOI 10.1145/1816038.1815968
[10]   EIE: Efficient Inference Engine on Compressed Deep Neural Network [J].
Han, Song ;
Liu, Xingyu ;
Mao, Huizi ;
Pu, Jing ;
Pedram, Ardavan ;
Horowitz, Mark A. ;
Dally, William J. .
2016 ACM/IEEE 43RD ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2016, :243-254