Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol

被引:95
作者
Hartz, KEH [1 ]
Rosenorn, T
Ferchak, SR
Raymond, TM
Bilde, M
Donahue, NM
Pandis, SN
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark
[3] Bucknell Univ, Dept Chem Engn, Lewisburg, PA 17837 USA
[4] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA
[5] Univ Patras, Dept Chem Engn, GR-26110 Patras, Greece
关键词
D O I
10.1029/2004JD005754
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The ability of biogenic secondary organic aerosol (SOA) to contribute to the concentration of cloud condensation nuclei (CCN) in the atmosphere is examined. Aerosol is generated by the ozonolysis reaction of monoterpenes (alpha-pinene, beta-pinene, 3-carene, and limonene) and sesquiterpenes (beta-caryophyllene, alpha-humulene, and alpha-cedrene) in a 10 m(3) temperature-controlled Teflon smog chamber. In some cases, a self-seeding technique is used, which enables high particle concentrations with the desired diameters without compromising particle composition and purity. The monoterpene SOA is excellent CCN material, and it activates similarly (average activation diameter equals 48 +/- 8 nm at 1% supersaturation for the species used in this work) to highly water-soluble organic species. Its effective solubility in water was estimated to be in the range of 0.07-0.40 g solute/g H2O. CCN measurements for sesquiterpene SOA (average activation diameter equals 120 +/- 20 nm at 1% supersaturation for the species used in this work) show that it is less CCN active than monoterpene SOA. The initial terpene mixing ratio (between 3 and 100 ppb) does not affect the CCN activation for freshly generated SOA.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 35 条
[1]   CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase [J].
Bilde, M ;
Svenningsson, B .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2004, 56 (02) :128-134
[2]   Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species [J].
Broekhuizen, K ;
Kumar, PP ;
Abbatt, JPD .
GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (01) :L011071-5
[3]   Product analysis of the gas-phase reaction of beta-caryophyllene with ozone [J].
Calogirou, A ;
Kotzias, D ;
Kettrup, A .
ATMOSPHERIC ENVIRONMENT, 1997, 31 (02) :283-285
[4]   OH radical formation yields from the gas-phase reactions of O-3 with alkenes and monoterpenes [J].
Chew, AA ;
Atkinson, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D22) :28649-28653
[5]   Cloud condensation nucleus activity of organic compounds: a laboratory study [J].
Corrigan, CE ;
Novakov, T .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (17) :2661-2668
[6]   A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei [J].
Cruz, CN ;
Pandis, SN .
ATMOSPHERIC ENVIRONMENT, 1997, 31 (15) :2205-2214
[7]   The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol [J].
Cruz, CN ;
Pandis, SN .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D11) :13111-13123
[8]   Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone [J].
Glasius, M ;
Lahaniati, M ;
Calogirou, A ;
Di Bella, D ;
Jensen, NR ;
Hjorth, J ;
Kotzias, D ;
Larsen, BR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (06) :1001-1010
[9]   A GLOBAL-MODEL OF NATURAL VOLATILE ORGANIC-COMPOUND EMISSIONS [J].
GUENTHER, A ;
HEWITT, CN ;
ERICKSON, D ;
FALL, R ;
GERON, C ;
GRAEDEL, T ;
HARLEY, P ;
KLINGER, L ;
LERDAU, M ;
MCKAY, WA ;
PIERCE, T ;
SCHOLES, B ;
STEINBRECHER, R ;
TALLAMRAJU, R ;
TAYLOR, J ;
ZIMMERMAN, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D5) :8873-8892
[10]   Laboratory studies of the efficiency of selected organic aerosols as CCN [J].
Hegg, DA ;
Gao, S ;
Hoppel, W ;
Frick, G ;
Caffrey, P ;
Leaitch, WR ;
Shantz, N ;
Ambrusko, J ;
Albrechcinski, T .
ATMOSPHERIC RESEARCH, 2001, 58 (03) :155-166