Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries

被引:355
作者
Gachot, Gregory [1 ]
Grugeon, Sylvie [1 ]
Armand, Michel [1 ]
Pilard, Serge
Guenot, Pierre [2 ]
Tarascon, Jean-Marie [1 ]
Laruelle, Stephane [1 ]
机构
[1] Univ Picardie Jules Verne, LRCS, F-80039 Amiens, France
[2] Univ Rennes 1, Ctr Reg Mesures Phys Ouest, Rennes, France
关键词
mass spectrometry; Li-ion batteries; carbonate-based electrolyte; electrolyte degradation; ring-opening nucleophilic reactions;
D O I
10.1016/j.jpowsour.2007.11.110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrolytes are crucial to the safety and long life of Li-ion batteries, however, the understanding of their degradation mechanisms is still sketchy. Here we report on the nature and formation of organic/inorganic degradation products generated at low potential in a lithium-based cell using cyclic and linear carbonate-based electrolyte mixtures. The global formation mechanism of ethylene oxide oligomers produced from EC/DMC (1/1 w/w)-LiPF6 salt (I M) electrolyte decomposition is proposed then mimicked via chemical tests. Each intermediary product structure/formula/composition is identified by means of combined NMR, FTIR and high resolution mass spectrometry (ESI-HRMS) analysis. The key role played by lithium methoxide as initiator of the electrolyte degradation is evidenced, but more importantly we isolated for the first time lithium methyl carbonate as a side product of the ethylene oxide oligomers chemical formation. The same degradation mechanism was found to hold on for another cyclic and linear carbonate-based electrolyte such as EC/DEC (1/1 w/w)-LiPF6 Salt (1 M). Such findings have important implications in the choice of chemical additives for developing highly performing electrolytes. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:409 / 421
页数:13
相关论文
共 24 条
[1]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[2]   Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems [J].
Aurbach, D ;
Zaban, A ;
Ein-Eli, Y ;
Weissman, I ;
Chusid, O ;
Markovsky, B ;
Levi, M ;
Levi, E ;
Schechter, A ;
Granot, E .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :91-98
[3]   THE SURFACE-CHEMISTRY OF LITHIUM ELECTRODES IN ALKYL CARBONATE SOLUTIONS [J].
AURBACH, D ;
EINELY, Y ;
ZABAN, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :L1-L3
[4]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES [J].
AURBACH, D ;
EINELI, Y ;
MARKOVSKY, B ;
ZABAN, A ;
LUSKI, S ;
CARMELI, Y ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2882-2890
[5]   IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS [J].
AURBACH, D ;
DAROUX, ML ;
FAGUY, PW ;
YEAGER, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) :1611-1620
[6]   THE BEHAVIOR OF LITHIUM ELECTRODES IN PROPYLENE AND ETHYLENE CARBONATE - THE MAJOR FACTORS THAT INFLUENCE LI CYCLING EFFICIENCY [J].
AURBACH, D ;
GOFER, Y ;
BENZION, M ;
APED, P .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 339 (1-2) :451-471
[7]   THE CORRELATION BETWEEN THE SURFACE-CHEMISTRY AND THE PERFORMANCE OF LI-CARBON INTERCALATION ANODES FOR RECHARGEABLE ROCKING-CHAIR TYPE BATTERIES [J].
AURBACH, D ;
EINELI, Y ;
CHUSID, O ;
CARMELI, Y ;
BABAI, M ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (03) :603-611
[8]   Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy:: Experimental and theoretical study [J].
Dedryvère, R ;
Gireaud, L ;
Grugeon, S ;
Laruelle, S ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33) :15868-15875
[9]   XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Gireaud, L ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A689-A696
[10]   Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Poizot, P ;
Gonbeau, D ;
Tarascon, JM .
CHEMISTRY OF MATERIALS, 2004, 16 (06) :1056-1061