A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause

被引:80
作者
Jensen, EJ
Pfister, L
Ackerman, AS
Tabazadeh, A
Toon, OB
机构
[1] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[2] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
来源
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES | 2001年 / 106卷 / D15期
关键词
D O I
10.1029/2000JD900649
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this study, we use a cloud model to simulate dehydration which occurs due to formation of optically thin, laminar cirrus as air rises slowly across the tropopause. The slow ascent and adiabatic cooling, which balances the radiative heating near the tropopause, drives nucleation of a very small number of ice crystals (< 1 L-1). These crystals grow rapidly and sediment out within a few hours. The clouds never become optically thick enough to be visible from the ground. The ice crystal nucleation and growth prevents the relative humidity with respect to ice (RHI) from rising more than a few percent above the threshold for ice nucleation (RHInuc similar or equal to 110-160%, depending upon the aerosol composition); hence, laminar cirrus can limit the mixing ratio of water vapor entering the stratosphere. However, the ice number densities are too low and their sedimentation is too rapid to allow dehydration of the air from RHInuc, down to saturation (RHI = 100%). The net result is that air crosses the tropopause with water vapor mixing ratios about 1.1 to 1.6 times the ice saturation mixing ratio corresponding to the tropopause temperature, depending on the threshold of ice nucleation on aerosols in the tropopause region. If the cross-tropopause ascent rate is larger than that calculated to balance radiative heating (0.2 cm s(-1)), then larger ice crystal number densities are generated., and more effective dehydration is possible (assuming a fixed temperature). The water vapor mixing ratio entering the stratosphere decreases with increasing ascent rate (approaching the tropopause ice saturation mixing ratio) until the vertical wind speed exceeds the ice crystal terminal velocity (about 10 cm s(-1)). More effective dehydration can also be provided by temperature oscillations associated with wave motions. The water vapor mixing ratio entering the stratosphere is essentially controlled by the tropopause temperature at the coldest point in the wave. Hence, the efficiency of dehydration at the tropopause depends upon both the effectiveness of upper tropospheric aerosols as ice nuclei and the occurrence of wave motions in the tropopause region. In situ humidity observations from tropical aircraft campaigns and balloon launches over the past several years have provided a few examples of ice-supersaturated air near the tropopause. However, given the scarcity of data and the uncertainties in water vapor measurements, we lack definitive evidence that air entering the stratosphere is supersaturated with respect to ice.
引用
收藏
页码:17237 / 17252
页数:16
相关论文
共 51 条
[2]   PARTICLE FORMATION IN THE UPPER TROPICAL TROPOSPHERE - A SOURCE OF NUCLEI FOR THE STRATOSPHERIC AEROSOL [J].
BROCK, CA ;
HAMILL, P ;
WILSON, JC ;
JONSSON, HH ;
CHAN, KR .
SCIENCE, 1995, 270 (5242) :1650-1653
[3]   ATMOSPHERIC NUCLEI IN THE REMOTE FREE-TROPOSPHERE [J].
CLARKE, AD .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1992, 14 (1-4) :479-488
[4]   LINE-BY-LINE CALCULATIONS OF ATMOSPHERIC FLUXES AND COOLING RATES - APPLICATION TO WATER-VAPOR [J].
CLOUGH, SA ;
IACONO, MJ ;
MONCET, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D14) :15761-15785
[5]   INSITU EVIDENCE OF RAPID, VERTICAL, IRREVERSIBLE TRANSPORT OF LOWER TROPOSPHERIC AIR INTO THE LOWER TROPICAL STRATOSPHERE BY CONVECTIVE CLOUD TURRETS AND BY LARGER-SCALE UPWELLING IN TROPICAL CYCLONES [J].
DANIELSEN, EF .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D5) :8665-8681
[6]   The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components [J].
DeMott, PJ ;
Rogers, DC ;
Kreidenweis, SM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D16) :19575-19584
[7]   MECHANISMS CONTROLLING WATER-VAPOR IN THE LOWER STRATOSPHERE - A TALE OF 2 STRATOSPHERES [J].
DESSLER, AE ;
HINTSA, EJ ;
WEINSTOCK, EM ;
ANDERSON, JG ;
CHAN, KR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D11) :23167-23172
[8]   A reexamination of the "stratospheric fountain" hypothesis [J].
Dessler, AE .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (22) :4165-4168
[9]   A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements [J].
Gierens, K ;
Schumann, U ;
Helten, M ;
Smit, H ;
Marenco, A .
ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1999, 17 (09) :1218-1226
[10]  
Gill AE., 1982, ATMOSPHERE OCEAN DYN, P317, DOI 10.1016/S0074-6142(08)60034-0