Conditional tail expectations for multivariate phase-type distributions

被引:78
作者
Cai, J [1 ]
Li, HJ
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Washington State Univ, Dept Math, Pullman, WA 99164 USA
关键词
univariate phase-type distribution; multivariate phase-type distribution; continuous-time Markov chain; convolution; extreme value; Marshall-Olkin distribution; conditional tail expectation; excess loss; residual lifetime;
D O I
10.1239/jap/1127322029
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The conditional tail expectation in risk analysis describes the expected amount of risk that can be experienced given that a potential risk exceeds a threshold value, and provides an important measure of right-tail risk. In this paper, we study the convolution and extreme values of dependent risks that follow a multivariate phase-type distribution, and derive explicit formulae for several conditional tail expectations of the convolution and extreme values for such dependent risks. Utilizing the underlying Markovian property of these distributions, our method not only provides structural insight, but also yields some new distributional properties of multivariate phase-type distributions.
引用
收藏
页码:810 / 825
页数:16
相关论文
共 13 条
[1]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[2]  
Asmussen S., 2003, Applied Probability and Queues
[3]   MULTIVARIATE PHASE-TYPE DISTRIBUTIONS [J].
ASSAF, D ;
LANGBERG, NA ;
SAVITS, TH ;
SHAKED, M .
OPERATIONS RESEARCH, 1984, 32 (03) :688-702
[4]  
Bowers N., 1997, Actuarial mathematics
[5]   Multivariate risk model of phase type [J].
Cai, J ;
Li, HJ .
INSURANCE MATHEMATICS & ECONOMICS, 2005, 36 (02) :137-152
[6]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI 10.1007/978-3-642-33483-2
[7]   A NEW CLASS OF MULTIVARIATE PHASE TYPE DISTRIBUTIONS [J].
KULKARNI, VG .
OPERATIONS RESEARCH, 1989, 37 (01) :151-158
[8]  
Landsman Z., 2003, N AM ACTUARIAL J, V7, P55, DOI DOI 10.1080/10920277.2003.10596118
[9]   On the dependence structure and bounds of correlated parallel queues and their applications to synchronized stochastic systems [J].
Li, HJ ;
Xu, SH .
JOURNAL OF APPLIED PROBABILITY, 2000, 37 (04) :1020-1043
[10]  
Marshall A., 1967, J AM STAT ASSOC, V2, P84