Objectives: To study the blocking effects of H 345/52 on ionic currents of rabbit ventricular myocytes and how these features translate into a proarrhythmic potential. Methods: The single electrode voltage clamp technique was used to study the effects of H 345/52 on the rapid component of the delayed rectifying potassium current, I-Kr, and the L-type calcium current (I-Ca). Differential effects of H 345/52 and almokalant on APD prolongation were studied in a rabbit Purkinje fibre/ventricular muscle preparation. The temporal variability of the action potential duration (APD) and its relation to proarrhythmias was examined in Langendorff-perfused rabbit hearts administered H 345/52 or almokalant. Anaesthetised, methoxamine-sensitised rabbits were used to assess the propensity of intravenous H 345/52 and ibutilide to induce torsades de pointes (TdP). Results: H 345/52 potently blocked I-Kr (IC50 = 40 nM) without consequential use-dependency. The I-Ca was also blocked, but at higher concentrations (IC50 =1.3 muM). Block of I-Ca was markedly frequency-dependent (positive) and influenced by membrane potential, such that H 345/52 was more effective following clamp steps from plateau potentials than from -80 mV. In the Purkinje fibre-ventricular muscle preparation, almokalant prolonged the Purkinje fibre APD preferentially, whereas H 345/52 homogeneously prolonged APD in both tissue types. In the perfused rabbit heart, H 345/52 (1 muM) and almokalant (0.3 muM) prolonged APD to a similar degree but increased the temporal variability of APD differently, from 3+/-0.4 ms in control hearts to 8+/-1.2 ms and to 38+/-7.5 ms (P<0.001 vs. H 345/52), respectively. Unequivocal early after-depolarisations were seen in 5/6 almokalant-perfused hearts but in no heart administered H 345/52 (P<0.05). In anaesthetised rabbits, H 345/52 (17.4 mu mol/kg) or ibutilide (2.6 mu mol/kg maximum), maximally lengthened the QT interval from 133+/-4.5 to 177+/-8.0 ms and from 125+/-5.1 to 166+/-9.3 ms (P<0.001, n=8). However, whereas ibutilide induced TdP in all animals at 0.06+/-0.009 <mu>mol/kg, H 345/52 did not induce TdP (P = 0.0002) at up to 17.4 mu mol/kg. Conclusions: H 345/52 blocks I-Kr with high potency and I-Ca with somewhat lower potency and was found to delay ventricular repolarisation without substantially increasing temporal or spatial dispersion and without inducing early after-depolarisations or TdP. (C) 2001 Elsevier Science BN. All rights reserved.