Human marrow stromal cells enhance connexin43 gap junction intercellular communication in cultured astrocytes

被引:31
作者
Gao, Q
Katakowski, M
Chen, XG
Li, Y
Chopp, M
机构
[1] Henry Ford Hlth Sci Ctr, Dept Neurol, Detroit, MI 48202 USA
[2] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[3] Chinese Acad Med Sci, Inst Mat Med, Dept Pharmacol, Beijing 100050, Peoples R China
关键词
gap junction; connexin-43; astrocyte; human marrow stromal cells; intercellular communication; ischemia;
D O I
10.3727/000000005783983205
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Human marrow stromal cells (hMSCs) provide functional benefit in rats subjected to stroke. Astrocytes are coupled into a cellular network via gap junction channels, predominantly composed of connexin-43 (Cx43) proteins. Astrocytes are believed to play a vital role in neuroprotection by providing energy substrates to neurons and by regulating the concentrations of K+ and neurotransmitters via gap junctions. We therefore investigated the effect of factors secreted by hMSCs on gap junction intercellular communication (GJIC), expression of Cx43, and phosphorylation of Cx43 in an astrocyte cell culture system. Exposing rat cortical astrocytes to various concentrations of hMSC conditioned medium, we demonstrate that hMSCs produce soluble factors that significantly increase astrocytic GJIC, measured by the scrape-loading dye transfer method. Immunohistochemistry and Western blot showed increased Cx43 expression concomitant with altered GJIC. As the PI3K/Akt signaling pathway has been demonstrated to alter gap junction expression and GJIC, we selectively blocked phosphoinositide 3-kinase (PI3K). Addition of the PI3K inhibitor LY294002 decreased GJIC and Cx43 expression in astrocytes. These inhibitory effects of LY294002 were countered by the addition of hMSC conditioned media. Furthermore, coculturing hMSCs with rat astrocytes increased astrocyte GJIC in a manner dependent upon the hMSC/astrocyte ratio. These findings demonstrate that hMSCs secrete soluble factors that increase GJIC of astrocytes through upregulation of Cx43, and indicate a mechanistic role for PI3K.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 34 条
[1]   Astrocytes and stroke: Networking for survival? [J].
Anderson, MF ;
Blomstrand, F ;
Blomstrand, C ;
Eriksson, PS ;
Nilsson, M .
NEUROCHEMICAL RESEARCH, 2003, 28 (02) :293-305
[2]   Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat [J].
Chen, JL ;
Li, Y ;
Katakowski, M ;
Chen, XG ;
Wang, L ;
Lu, DY ;
Lu, M ;
Gautam, SC ;
Chopp, M .
JOURNAL OF NEUROSCIENCE RESEARCH, 2003, 73 (06) :778-786
[3]   Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats [J].
Chen, JL ;
Li, Y ;
Wang, L ;
Zhang, ZG ;
Lu, DY ;
Lu, M ;
Chopp, M .
STROKE, 2001, 32 (04) :1005-1011
[4]   Ischemic rat brain extracts induce human marrow stromal cell growth factor production [J].
Chen, XG ;
Li, Y ;
Wang, L ;
Katakowski, M ;
Zhang, LJ ;
Chen, JL ;
Xu, YX ;
Gautam, SC ;
Chopp, M .
NEUROPATHOLOGY, 2002, 22 (04) :275-279
[5]   Astrocytes and brain injury [J].
Chen, YM ;
Swanson, RA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2003, 23 (02) :137-149
[6]   Treatment of neural injury with marrow stromal cells [J].
Chopp, M ;
Li, Y .
LANCET NEUROLOGY, 2002, 1 (02) :92-100
[7]   GAP-JUNCTIONS IN THE BRAIN - WHERE, WHAT TYPE, HOW MANY AND WHY [J].
DERMIETZEL, R ;
SPRAY, DC .
TRENDS IN NEUROSCIENCES, 1993, 16 (05) :186-192
[8]  
Dermietzel R., 2000, ADV MOL CEL, V30, P323
[9]   SCRAPE-LOADING AND DYE TRANSFER - A RAPID AND SIMPLE TECHNIQUE TO STUDY GAP JUNCTIONAL INTERCELLULAR COMMUNICATION [J].
ELFOULY, MH ;
TROSKO, JE ;
CHANG, CC .
EXPERIMENTAL CELL RESEARCH, 1987, 168 (02) :422-430
[10]  
Ferrari A, 2001, J BIOMED MATER RES, V56, P361, DOI 10.1002/1097-4636(20010905)56:3<361::AID-JBM1104>3.0.CO