Rice proteome analysis: A step toward functional analysis of the rice genome

被引:46
作者
Komatsu, S [1 ]
Tanaka, N [1 ]
机构
[1] Natl Inst Agrobiol Sci, Dept Mol Genet, Tsukuba, Ibaraki 3058602, Japan
关键词
functional genomics; proteome database; review; rice; two-dimensional gel electrophoresis;
D O I
10.1002/pmic.200401040
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The technique of proteome analysis using 2-DE has the power to monitor global changes that occur in the protein complement of tissues and subcellular compartments. In this review, we describe construction of the rice proteome database, the cataloging of rice proteins, and the functional characterization of some of the proteins identified. Initially, proteins extracted from various tissues and organelles were separated by 2-DE and an image analyzer was used to construct a display or reference map of the proteins. The rice proteome database currently contains 23 reference maps based on 2-DE of proteins from different rice tissues and subcellular compartments. These reference maps comprise 13 129 rice proteins, and the amino acid sequences of 5092 of these proteins are entered in the database. Major proteins involved in growth or stress responses have been identified by using a proteomics approach and some of these proteins have unique functions. Furthermore, initial work has also begun on analyzing the phosphoproteome and protein-protein interactions in rice. The information obtained from the rice proteome database will aid in the molecular cloning of rice genes and in predicting the function of unknown proteins.
引用
收藏
页码:938 / 949
页数:12
相关论文
共 73 条
[1]   A proteomic approach to analyze salt-responsive proteins in rice leaf sheath [J].
Abbasi, FM ;
Komatsu, S .
PROTEOMICS, 2004, 4 (07) :2072-2081
[2]  
AGRAWAL GK, 2002, PROTEOMICS, V2, P974
[3]   Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana [J].
Bevan, M ;
Bancroft, I ;
Bent, E ;
Love, K ;
Goodman, H ;
Dean, C ;
Bergkamp, R ;
Dirkse, W ;
Van Staveren, M ;
Stiekema, W ;
Drost, L ;
Ridley, P ;
Hudson, SA ;
Patel, K ;
Murphy, G ;
Piffanelli, P ;
Wedler, H ;
Wedler, E ;
Wambutt, R ;
Weitzenegger, T ;
Pohl, TM ;
Terryn, N ;
Gielen, J ;
Villarroel, R ;
De Clerck, R ;
Van Montagu, M ;
Lecharny, A ;
Auborg, S ;
Gy, I ;
Kreis, M ;
Lao, N ;
Kavanagh, T ;
Hempel, S ;
Kotter, P ;
Entian, KD ;
Rieger, M ;
Schaeffer, M ;
Funk, B ;
Mueller-Auer, S ;
Silvey, M ;
James, R ;
Montfort, A ;
Pons, A ;
Puigdomenech, P ;
Douka, A ;
Voukelatou, E ;
Milioni, D ;
Hatzopoulos, P ;
Piravandi, E ;
Obermaier, B .
NATURE, 1998, 391 (6666) :485-488
[4]   Protein expression profiles in human breast ductal carcinoma and histologically normal tissue [J].
Bini, L ;
Magi, B ;
Marzocchi, B ;
Arcuri, F ;
Tripodi, S ;
Cintorino, M ;
Sanchez, JC ;
Frutiger, S ;
Hughes, G ;
Pallini, V ;
Hochstrasser, DF ;
Tosi, P .
ELECTROPHORESIS, 1997, 18 (15) :2832-2841
[5]   Auxin transport promotes Arabidopsis lateral root initiation [J].
Casimiro, I ;
Marchant, A ;
Bhalerao, RP ;
Beeckman, T ;
Dhooge, S ;
Swarup, R ;
Graham, N ;
Inzé, D ;
Sandberg, G ;
Casero, PJ ;
Bennett, M .
PLANT CELL, 2001, 13 (04) :843-852
[6]   GROWTH OF CONTINENTAL-SCALE METRO-AGRO-PLEXES, REGIONAL OZONE POLLUTION, AND WORLD FOOD-PRODUCTION [J].
CHAMEIDES, WL ;
KASIBHATLA, PS ;
YIENGER, J ;
LEVY, H .
SCIENCE, 1994, 264 (5155) :74-77
[7]  
CLEVELAND DW, 1977, J BIOL CHEM, V252, P1102
[8]  
Davies PJ, 1995, PLANT HORMONES PHYSL
[9]   Genome relationships: The grass model in current research [J].
Devos, KM ;
Gale, MD .
PLANT CELL, 2000, 12 (05) :637-646
[10]   A reversibly glycosylated polypeptide (RGP1) possibly involved in plant cell wall synthesis: Purification, gene cloning, and trans-Golgi localization [J].
Dhugga, KS ;
Tiwari, SC ;
Ray, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7679-7684