Simian-human immunodeficiency virus escape from cytotoxic T-lymphocyte recognition at a structurally constrained epitope

被引:78
作者
Peyerl, FW
Barouch, DH
Yeh, WW
Bazick, HS
Kunstman, J
Kunstman, KJ
Wolinsky, SM
Letvin, NL
机构
[1] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Div Viral Pathogenesis, Boston, MA 02215 USA
[2] Northwestern Univ, Sch Med, Dept Med, Chicago, IL 60611 USA
关键词
D O I
10.1128/JVI.77.23.12572-12578.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Virus-specific cytotoxic T lymphocytes (CTL) exert intense selection pressure on replicating simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) in infected individuals. The immunodominantMamu-A*01-restricted Gag p11C, C-M epitope is highly conserved among all sequenced isolates of SIV and therefore likely is structurally constrained. The strategies used by virus isolates to mutate away from an immunodominant epitope-specific CTL response are not well defined. Here we demonstrate that the emergence of a position 2 p11C, C-M epitope substitution (T47I) in a simian-human immunodeficiency virus (SHIV) strain 89.6P-infected Mamu-A*01(+) monkey is temporally correlated with the emergence of a flanking isoleucine-to-valine substitution at position 71 (171V) of the capsid protein. An analysis of the SIV and HIV-2 sequences from the Los Alamos HIV Sequence Database revealed a significant association between any position 2 p11C, GM epitope mutation and the I71V mutation. The T47I mutation alone is associated with significant decreases in viral protein expression, infectivity, and replication, and these deficiencies are restored to wild-type levels with the introduction of the flanking I71V mutation. Together, these data suggest that a compensatory mutation is selected for in SHIN strain 89.61P to facilitate the escape of that virus from CTL recognition of the dominant p11C, C-M epitope.
引用
收藏
页码:12572 / 12578
页数:7
相关论文
共 37 条
[1]   Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia [J].
Allen, TM ;
O'Connor, DH ;
Jing, PC ;
Dzuris, JL ;
Mothé, BR ;
Vogel, TU ;
Dunphy, E ;
Liebl, ME ;
Emerson, C ;
Wilson, N ;
Kunstman, KJ ;
Wang, XC ;
Allison, DB ;
Hughes, AL ;
Desrosiers, RC ;
Altman, JD ;
Wolinsky, SM ;
Sette, A ;
Watkins, DI .
NATURE, 2000, 407 (6802) :386-390
[2]   Viral escape from dominant simian immunodeficiency virus epitope-specific cytotoxic T lymphocytes in DNA-vaccinated rhesus monkeys [J].
Barouch, DH ;
Kunstman, J ;
Glowczwskie, J ;
Kunstman, KJ ;
Egan, MA ;
Peyerl, FW ;
Santra, S ;
Kuroda, MJ ;
Schmitz, JE ;
Beaudry, K ;
Krivulka, GR ;
Lifton, MA ;
Gorgone, DA ;
Wolinsky, SM ;
Letvin, NL .
JOURNAL OF VIROLOGY, 2003, 77 (13) :7367-7375
[3]   Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination [J].
Barouch, DH ;
Santra, S ;
Schmitz, JE ;
Kuroda, MJ ;
Fu, TM ;
Wagner, W ;
Bilska, M ;
Craiu, A ;
Zheng, XX ;
Krivulka, GR ;
Beaudry, K ;
Lifton, MA ;
Nickerson, CE ;
Trigona, WL ;
Punt, K ;
Freed, DC ;
Guan, LM ;
Dubey, S ;
Casimiro, D ;
Simon, A ;
Davies, ME ;
Chastain, M ;
Strom, TB ;
Gelman, RS ;
Montefiori, DC ;
Lewis, MG ;
Emini, EA ;
Shiver, JW ;
Letvin, NL .
SCIENCE, 2000, 290 (5491) :486-492
[4]   Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes [J].
Barouch, DH ;
Kunstman, J ;
Kuroda, MJ ;
Schmitz, JE ;
Santra, S ;
Peyerl, FW ;
Krivulka, GR ;
Beaudry, K ;
Lifton, MA ;
Gorgone, DA ;
Montefiori, DC ;
Lewis, MG ;
Wolinsky, SM ;
Letvin, NL .
NATURE, 2002, 415 (6869) :335-339
[5]   Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus [J].
Borrow, P ;
Lewicki, H ;
Wei, XP ;
Horwitz, MS ;
Peffer, N ;
Meyers, H ;
Nelson, JA ;
Gairin, JE ;
Hahn, BH ;
Oldstone, MBA ;
Shaw, GM .
NATURE MEDICINE, 1997, 3 (02) :205-211
[6]   Changes in human immunodeficiency virus type 1 envelope glycoproteins responsible for the pathogenicity of a multiply passaged simian-human immunodeficiency virus (SHIV-HXBc2) [J].
Cayabyab, M ;
Karlsson, GB ;
Etemad-Moghadam, BA ;
Hofmann, W ;
Steenbeke, T ;
Halloran, M ;
Fanton, JW ;
Axthelm, MK ;
Letvin, NL ;
Sodroski, JG .
JOURNAL OF VIROLOGY, 1999, 73 (02) :976-984
[7]  
CHEN ZW, 1992, J IMMUNOL, V149, P4060
[8]   Simian immunodeficiency virus evades a dominant epitope-specific cytotoxic T lymphocyte response through a mutation resulting in the accelerated dissociation of viral peptide and MHC class I [J].
Chen, ZW ;
Craiu, A ;
Shen, L ;
Kuroda, MJ ;
Iroku, UC ;
Watkins, DI ;
Voss, G ;
Letvin, NL .
JOURNAL OF IMMUNOLOGY, 2000, 164 (12) :6474-6479
[9]   IMPAIRED CYTOTOXIC T-LYMPHOCYTE RECOGNITION DUE TO GENETIC VARIATIONS IN THE MAIN IMMUNOGENIC REGION OF THE HUMAN-IMMUNODEFICIENCY-VIRUS-1 NEF PROTEIN [J].
COUILLIN, I ;
CULMANNPENCIOLELLI, B ;
GOMARD, E ;
CHOPPIN, J ;
LEVY, JP ;
GUILLET, JG ;
SARAGOSTI, S .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 180 (03) :1129-1134
[10]   Simian immunodeficiency virus (SIV) gag DNA-vaccinated rhesus monkeys develop secondary cytotoxic T-lymphocyte responses and control viral replication after pathogenic SIV infection [J].
Egan, MA ;
Charini, WA ;
Kuroda, MJ ;
Schmitz, JE ;
Racz, P ;
Tenner-Racz, K ;
Manson, K ;
Wyand, M ;
Lifton, MA ;
Nickerson, CE ;
Fu, TM ;
Shiver, JW ;
Letvin, NL .
JOURNAL OF VIROLOGY, 2000, 74 (16) :7485-7495