A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem

被引:33
作者
Bronsard, L [1 ]
Garcke, H
Stoth, B
机构
[1] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
[2] Univ Bonn, IAM, D-53115 Bonn, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1017/S0308210500021612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a generalisation of the Mullins-Sekerka problem to model phase separation in multi-component systems. The model includes equilibrium equations in bulk, the Gibbs-Thomson relation on the interfaces, Young's law at triple junctions, together with a dynamic law of Stefan type. Using formal asymptotic expansions, we establish the relationship to a transition layer model known as the Cahn-Hilliard system. We introduce a notion of weak solutions for this sharp interface model based on integration by parts on manifolds, together with measure theoretical tools. Through an implicit time discretisation, we construct approximate solutions by stepwise minimisation. Under the assumption that there is no loss of area as the time step tends to zero, we show the existence of a weak solution.
引用
收藏
页码:481 / 506
页数:26
相关论文
共 38 条
[1]   CONVERGENCE OF THE CAHN-HILLIARD EQUATION TO THE HELE-SHAW MODEL [J].
ALIKAKOS, ND ;
BATES, PW ;
CHEN, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (02) :165-205
[2]   CURVATURE-DRIVEN FLOWS - A VARIATIONAL APPROACH [J].
ALMGREN, F ;
TAYLOR, JE ;
WANG, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :387-437
[3]  
BALDO S, 1990, ANN I H POINCARE-AN, V7, P37
[4]   ON 3-PHASE BOUNDARY MOTION AND THE SINGULAR LIMIT OF A VECTOR-VALUED GINZBURG-LANDAU EQUATION [J].
BRONSARD, L ;
REITICH, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (04) :355-379
[5]  
Bronsard L, 1996, COMMUN PUR APPL MATH, V49, P677, DOI 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.3.CO
[6]  
2-6
[7]   DYNAMICS OF LAYERED INTERFACES ARISING FROM PHASE BOUNDARIES [J].
CAGINALP, G ;
FIFE, PC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :506-518
[8]  
CAHN J, 1996, P FBP 95 ZAK
[9]  
Cahn J. M., 1996, Euro. J. Appl. Math., V7, P287, DOI DOI 10.1017/S0956792500002369
[10]   EVOLUTION-EQUATIONS FOR PHASE-SEPARATION AND ORDERING IN BINARY-ALLOYS [J].
CAHN, JW ;
NOVICKCOHEN, A .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (3-4) :877-909