Dynamical properties of a ferroelectric capacitor observed through nonlinear time series analysis

被引:43
作者
Hegger, R
Kantz, H
Schmuser, F
Diestelhorst, M
Kapsch, RP
Beige, H
机构
[1] Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany
[2] Univ Halle Wittenberg, Fachbereich Phys, D-06108 Halle, Germany
关键词
D O I
10.1063/1.166356
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By data analysis the ordinary differential equation for the description of an experimental electric resonance circuit with nonlinear capacitor is derived. Triglycine sulfate (TGS) was used as nonlinear dielectric material. This is the most thoroughly investigated ferroelectric with a second order phase transition. Its static dielectric small signal behavior is well described in the framework of the Landau theory, yielding a Duffing-type ordinary differential equation as a model equation of the circuit. Data analysis allows us to check carefully the validity of this model and to determine required corrections of this simplified equation. (C) 1998 American Institute of Physics.
引用
收藏
页码:727 / 736
页数:10
相关论文
共 19 条
[1]   CHAOS NEAR STRUCTURAL PHASE-TRANSITIONS [J].
BEIGE, H ;
DIESTELHORST, M ;
FORSTER, R ;
KRIETSCH, T .
PHASE TRANSITIONS, 1992, 37 (04) :213-238
[2]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[3]  
DAVIES MJ, UNPUB
[4]  
Diestelhorst M., 1995, Ferroelectrics, V172, P419, DOI 10.1080/00150199508018506
[5]  
DIESTELHORST M, 1994, FERROELECTRICS, V156, P111
[6]  
DIESTELHORST M, 1988, FERROELECTRICS, V88, P15
[7]   CHARACTERIZATION OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1983, 50 (05) :346-349
[8]   NONLINEAR TIME SEQUENCE ANALYSIS [J].
Grassberger, Peter ;
Schreiber, Thomas ;
Schaffrath, Carsten .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :521-547
[9]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[10]   Unbiased reconstruction of the dynamics underlying a noisy chaotic time series [J].
Jaeger, L ;
Kantz, H .
CHAOS, 1996, 6 (03) :440-450