On positivity preserving finite volume schemes for Euler equations

被引:164
作者
Perthame, B
Shu, CW
机构
[1] BROWN UNIV,DIV APPL MATH,PROVIDENCE,RI 02912
[2] NASA,LANGLEY RES CTR,ICASE,HAMPTON,VA 23681
关键词
D O I
10.1007/s002110050187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the positivity preserving property of first and higher order finite volume schemes for one and two dimensional Euler equations of gas dynamics. A general framework is established which shows the positivity of density and pressure whenever the underlying one dimensional first order building block based on an exact or approximate Riemann solver and the reconstruction are both positivity preserving. Appropriate Limitation to achieve a high order positivity preserving reconstruction is described.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 13 条
[1]  
CHAMPIER S, CONVERGENCE UPSTREAM
[2]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[3]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[4]   CONVERGENCE OF FINITE-DIFFERENCE SCHEMES FOR CONSERVATION-LAWS IN SEVERAL SPACE DIMENSIONS - A GENERAL-THEORY [J].
COQUEL, F ;
LEFLOCH, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (03) :675-700
[5]   ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A ;
LAX, PD ;
VAN LEER, B .
SIAM REVIEW, 1983, 25 (01) :35-61
[6]  
HARTEN A, 1987, J COMPUT PHYS, V71, P231, DOI [10.1016/0021-9991(87)90031-3, 10.1006/jcph.1996.5632]
[7]   MAXIMUM PRINCIPLE ON THE ENTROPY AND 2ND-ORDER KINETIC SCHEMES [J].
KHOBALATTE, B ;
PERTHAME, B .
MATHEMATICS OF COMPUTATION, 1994, 62 (205) :119-131
[8]   2ND-ORDER BOLTZMANN SCHEMES FOR COMPRESSIBLE EULER EQUATIONS IN ONE AND 2 SPACE DIMENSIONS [J].
PERTHAME, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :1-19
[9]  
PERTHAME B, IN PRESS J COMPUT PH
[10]  
SANDERS R, COMMUNICATION