Constructive and algebraic methods of the theory of rough sets

被引:677
作者
Yao, YY [1 ]
机构
[1] Lakehead Univ, Dept Comp Sci, Thunder Bay, ON P7B 5E1, Canada
关键词
approximation operators; modal logic; rough set algebras;
D O I
10.1016/S0020-0255(98)00012-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper reviews and compares constructive and algebraic approaches in the study of rough sets. In the constructive approach, one starts from a binary relation and defines a pair of lower and upper approximation operators using the binary relation. Different classes of rough set algebras are obtained from different types of binary relations. In the algebraic approach, one defines a pair of dual approximation operators and states axioms that must be satisfied by the operators. Various classes of rough set algebras are characterized by different sets of axioms. Axioms of approximation operators guarantee the existence of certain types of binary relations producing the same operators. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:21 / 47
页数:27
相关论文
共 50 条
[1]  
[Anonymous], 1987, Bull. Polish Acad. Sci. Math
[2]  
[Anonymous], 1980, Modal Logic: An Introduction, DOI DOI 10.1017/CBO9780511621192
[3]   Generalized Rough Sets (Preclusivity Fuzzy-Intuitionistic (BZ) Lattices) [J].
Cattaneo G. .
Studia Logica, 1997, 58 (1) :47-77
[4]  
CATTANEO G, 1997, MATH FDN ROUGHNESS F
[5]  
Cohn P. M., 1965, UNIVERSAL ALGEBRA
[6]  
Comer S., 1993, Algebraic Methods in Logic and Computer Science, P117, DOI [10.4064/-28-1-117-124, DOI 10.4064/-28-1-117-124]
[7]  
Comer S. D., 1991, Fundamenta Informaticae, V14, P492
[8]  
Duntsch I., 1998, INCOMPLETE INFORM RO, P95, DOI [10.1007/978-3-7908-1888-8_5, DOI 10.1007/978-3-7908-1888-85]
[9]  
Gehrke M., 1992, B POLISH ACAD SCI MA, V40, P235
[10]  
HENKIN L, 1971, CYLINDRIC ALGEBRAS, V1