Clustering appearances of 3D objects

被引:22
作者
Basri, R [1 ]
Roth, D [1 ]
Jacobs, D [1 ]
机构
[1] Weizmann Inst Sci, Dept Appl Math, IL-76100 Rehovot, Israel
来源
1998 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 1998年
关键词
D O I
10.1109/CVPR.1998.698639
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a method for unsupervised clustering of images of 3D objects. Our method examines the space of all images and partitions the images into sets that form smooth and parallel surfaces in this space. Ii further uses sequences of images to obtain more reliable clustering. Finally, since our method relies on a non-Euclidean similarity measure we introduce algebraic techniques for estimating local properties of these surfaces without first embedding the images in a Euclidean space. We demonstrate our method by applying it to a large database of images.
引用
收藏
页码:414 / 420
页数:7
相关论文
empty
未找到相关数据