The mortar finite element method for contact problems

被引:78
作者
Belgacem, FB [1 ]
Hild, P [1 ]
Laborde, P [1 ]
机构
[1] Univ Toulouse 3, CNRS, UMR 5640, INSAT,UPS, F-31062 Toulouse, France
关键词
contact problems; nonmatching meshes; error estimation; mortar finite element method;
D O I
10.1016/S0895-7177(98)00121-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of this paper is to describe a domain decomposition technique: the mortar finite element method applied to contact problems between two elastic bodies. This approach allows the use of no-matching grids and to glue different discretizations across the contact zone in an optimal way, at least for bilateral contact. We present also an adaptation of this method to unilateral contact problems. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:263 / 271
页数:9
相关论文
共 11 条
[1]   A SPECTRAL ELEMENT METHODOLOGY TUNED TO PARALLEL IMPLEMENTATIONS [J].
BENBELGACEM, F ;
MADAY, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :59-67
[2]  
BENBELGACEM F, 1993, H17293017 EDF
[3]  
BENBELGACEM P, UNPUB METHODE ELEMEN
[4]  
BERNARDI C, 1990, MATH COMPUT, V54, P21, DOI 10.1090/S0025-5718-1990-0995205-7
[5]  
Bernardi C., 1992, NONLINEAR PARTIAL DI, P13
[6]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[8]  
Duvant G., 2012, Inequalities in Mechanics and Physics, V219
[9]   SIGNORINI PROBLEM WITH COULOMB LAW OF FRICTION - SHAPE OPTIMIZATION IN CONTACT PROBLEMS [J].
HASLINGER, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 34 (01) :223-231
[10]  
Kikuchi N., 1988, CONTACT PROBLEMS ELA