Gonadal hormone modulation of dendrites in the mammalian CNS

被引:194
作者
Cooke, BM [1 ]
Woolley, CS [1 ]
机构
[1] Northwestern Univ, Dept Neurobiol & Physiol, Evanston, IL 60208 USA
来源
JOURNAL OF NEUROBIOLOGY | 2005年 / 64卷 / 01期
关键词
androgen; estrogen; reproductive behavior; activity dependent; synapse;
D O I
10.1002/neu.20143
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This review focuses on the effect of gonadal steroid hormones, androgen and estrogen, on dendrites in the adult rat central nervous system (CNS). Four hormone-responsive nuclei are considered: The spinal nucleus of the bulbocavernosus (SNB), the medial nucleus of the amygdala (MeA), the ventromedial nucleus of the hypothalamus (VMN), and the CA1 region of the dorsal hippocampus. Particular emphasis is placed on the mode of hormone action in each nucleus. In the SNB, VMN, and hippocampus, hormones appear to mediate their effects indirectly, via cells other than those that display morphological plasticity. In the MeA, estrogen and/or androgen appears to act primarily on those cells whose dendrites are modulated by the hormone. Importantly, increasing levels of gonadal hormones do not simply result in increases in dendritic parameters. In the VMN, high levels of estrogen associated with proestrus increase dendritic spine density in one subset of cells and reduce spine density in another subset. The pyramidal cells of dorsal CA1 also undergo phasic changes in dendritic spine and synapse density across the estrous cycle. The estrogen-induced excitatory synapses connect with preexisting axonal boutons that also form synapses with other CA1 cells, thereby increasing the divergence of excitatory afferents to dorsal CA1. These findings indicate that gonadal steroids have a profound impact on the morphology of dendrites and patterns of synaptic connectivity. Consequently, the experimental manipulation of hormone levels is a powerful tool to study structure-function relationships in the mammalian brain. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:34 / 46
页数:13
相关论文
共 85 条
[1]   Different modes of hippocampal plasticity in response to estrogen in young and aged female rats [J].
Adams, MM ;
Shah, RA ;
Janssen, WGM ;
Morrison, JH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (14) :8071-8076
[2]   ESTROGEN-TREATMENT ENHANCES SURVIVAL OF CULTURED FETAL-RAT AMYGDALA NEURONS IN A DEFINED MEDIUM [J].
ARIMATSU, Y ;
HATANAKA, H .
DEVELOPMENTAL BRAIN RESEARCH, 1986, 26 (01) :151-159
[3]   Spatial learning and memory at defined points of the estrous cycle: Effects on performance of a hippocampal-dependent task [J].
Berry, B ;
McMahan, R ;
Gallagher, M .
BEHAVIORAL NEUROSCIENCE, 1997, 111 (02) :267-274
[4]  
Blaustein JD, 2002, HORMONES BRAIN BEHAV, V1, P139
[5]   HORMONE ACCUMULATION IN A SEXUALLY DIMORPHIC MOTOR NUCLEUS OF THE RAT SPINAL-CORD [J].
BREEDLOVE, SM ;
ARNOLD, AP .
SCIENCE, 1980, 210 (4469) :564-566
[6]  
Calhoun J. B., 1962, The ecology and sociology of the Norway rat
[7]  
Calizo LH, 2000, J NEUROSCI, V20, P1589
[8]   Estrogen-induced dendritic spine elimination on female rat ventromedial hypothalamic neurons that project to the periaqueductal gray [J].
Calizo, LH ;
Flanagan-Cato, LM .
JOURNAL OF COMPARATIVE NEUROLOGY, 2002, 447 (03) :234-248
[9]   Acute administration of estrogen and progesterone impairs the acquisition of the spatial Morris water maze in ovariectomized rats [J].
Chesler, EJ ;
Juraska, JM .
HORMONES AND BEHAVIOR, 2000, 38 (04) :234-242
[10]   Patterns of dye coupling in lumbar motor nuclei of the rat [J].
Coleman, AM ;
Sengelaub, DR .
JOURNAL OF COMPARATIVE NEUROLOGY, 2002, 454 (01) :34-41