Characterization of heterologous multigene operons in transgenic chloroplasts. Transcription, processing, and translation

被引:96
作者
Quesada-Vargas, T [1 ]
Ruiz, ON [1 ]
Daniell, H [1 ]
机构
[1] Univ Cent Florida, Dept Mol Biol & Microbiol, Orlando, FL 32816 USA
关键词
D O I
10.1104/pp.105.063040
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The first characterization of transcriptional, posttranscriptional, and translational processes of heterologous operons expressed via the tobacco (Nicotiana tabacum) chloroplast genome is reported here. Northern-blot analyses performed on chloroplast transgenic lines harboring seven different heterologous operons revealed that polycistronic mRNA was the predominant transcript produced. Despite the lack of processing of such polycistrons, large amounts of foreign protein accumulation was observed in these transgenic lines, indicating abundant translation of polycistrons. This is supported by polysome fractionation assays, which allowed detection of polycistronic RNA in lower fractions of the sucrose gradients. These results show that the chloroplast posttranscriptional machinery can indeed detect and translate multigenic sequences that are not of chloroplast origin. In contrast to native transcripts, processed and unprocessed heterologous polycistrons were stable, even in the absence of 3' untranslated regions (UTRs). Unlike native 5' UTRs, heterologous secondary structures or 5' UTRs showed efficient translational enhancement independent of cellular control. Abundant read-through transcripts were observed in the presence of chloroplast 3' UTRs but they were efficiently processed at introns present within the native operon. Heterologous genes regulated by the psbA (the photosystem II polypeptide D1) promoter, 5' and 3' UTRs have greater abundance of transcripts than the endogenous psbA gene because transgenes were integrated into the inverted repeat region. Addressing questions about polycistrons, and the sequences required for their processing and transcript stability, are essential in chloroplast metabolic engineering. Knowledge of such factors would enable engineering of foreign pathways independent of the chloroplast complex posttranscriptional regulatory machinery.
引用
收藏
页码:1746 / 1762
页数:17
相关论文
共 63 条
[1]   CONTROL OF MESSENGER-RNA STABILITY IN CHLOROPLASTS BY 3' INVERTED REPEATS - EFFECTS OF STEM AND LOOP MUTATIONS ON DEGRADATION OF PSBA MESSENGER-RNA INVITRO [J].
ADAMS, CC ;
STERN, DB .
NUCLEIC ACIDS RESEARCH, 1990, 18 (20) :6003-6010
[2]   Participation of nuclear genes in chloroplast gene expression [J].
Barkan, A ;
Goldschmidt-Clermont, M .
BIOCHIMIE, 2000, 82 (6-7) :559-572
[4]   A NUCLEAR MUTATION IN MAIZE BLOCKS THE PROCESSING AND TRANSLATION OF SEVERAL CHLOROPLAST MESSENGER-RNAS AND PROVIDES EVIDENCE FOR THE DIFFERENTIAL TRANSLATION OF ALTERNATIVE MESSENGER-RNA FORMS [J].
BARKAN, A ;
WALKER, M ;
NOLASCO, M ;
JOHNSON, D .
EMBO JOURNAL, 1994, 13 (13) :3170-3181
[5]  
Barkan A, 2004, MOLECULAR BIOLOGY AND BIOTECHNOLOGY OF PLANT ORGANELLES: CHLOROPLASTS AND MITOCHONDRIA, P295, DOI 10.1007/978-1-4020-3166-3_11
[6]   Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products [J].
Bogorad, L .
TRENDS IN BIOTECHNOLOGY, 2000, 18 (06) :257-263
[7]  
CHEN HC, 1991, J BIOL CHEM, V266, P24205
[8]   Translational regulations as specific traits of chloroplast gene expression [J].
Choquet, Y ;
Wollman, FA .
FEBS LETTERS, 2002, 529 (01) :39-42
[9]  
Daniell H, 2005, METH MOL B, V286, P111
[10]  
Daniell H, 2004, MOLECULAR BIOLOGY AND BIOTECHNOLOGY OF PLANT ORGANELLES: CHLOROPLASTS AND MITOCHONDRIA, P443, DOI 10.1007/978-1-4020-3166-3_16