Quantum mechanics on the h-deformed quantum plane

被引:7
作者
Cho, SG [1 ]
机构
[1] Semyung Univ, Dept Phys, Chungbuk 390711, South Korea
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 11期
关键词
D O I
10.1088/0305-4470/32/11/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended h-deformed quantum plane and solve the Schrodinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincare half-plane, a surface of constant negative Gaussian curvature. We show that the bound state energy spectra for particles under specific potentials depend explicitly on the deformation parameter h. Moreover, it is shown that bound states can survive on the quantum plane in a limiting case where bound states on the Poincare half-plane disappear.
引用
收藏
页码:2091 / 2102
页数:12
相关论文
共 21 条
[2]  
[Anonymous], 1992, GEOMETRY OF SURFACES, DOI DOI 10.1007/978-1-4612-0929-4
[3]   QUANTUM GROUP PARTICLES AND NON-ARCHIMEDEAN GEOMETRY [J].
AREFEVA, IY ;
VOLOVICH, IV .
PHYSICS LETTERS B, 1991, 268 (02) :179-187
[4]  
CERCHIAI BL, 1998, IN PRESS EUR J PHY C
[5]  
Chari V., 1995, A Guide to Quantum Groups
[6]   Non-commutative geometry of the h-deformed quantum plane [J].
Cho, S ;
Madore, J ;
Park, KS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11) :2639-2654
[7]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[8]  
DEMIDOV EE, 1990, PROG THEOR PHYS SUPP, P203, DOI 10.1143/PTPS.102.203
[9]   q-deformed phase space and its lattice structure [J].
Fichtmuller, M ;
Lorek, A ;
Wess, J .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 71 (03) :533-537
[10]   SEPARATION OF VARIABLES IN PATH-INTEGRALS AND PATH INTEGRAL SOLUTION OF 2 POTENTIALS ON THE POINCARE UPPER HALF-PLANE [J].
GROSCHE, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4885-4901