Break-induced replication - What is it and what is it for?

被引:232
作者
Llorente, Bertrand [2 ]
Smith, Catherine E. [1 ]
Symington, Lorraine S. [1 ]
机构
[1] Columbia Univ, Med Ctr, Dept Microbiol, New York, NY 10032 USA
[2] Univ Aix Marseille 2, CNRS, F-13284 Marseille 07, France
关键词
homologous recombination; DNA repair; DNA replication; Rad51; Rad52; telomeres;
D O I
10.4161/cc.7.7.5613
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Homologous recombination (HR) is considered to be an error-free mechanism for the repair of DNA double-strand breaks (DSBs). Indeed, most DSB repair events occur by a non-crossover mechanism limiting loss of heterozygosity (LOH) for markers downstream of the site of repair and preventing chromosome rearrangements. However, DSBs that arise by replication fork collapse or by erosion of uncapped telomeres have only one free end and are thought to repair by strand invasion into a homologous duplex DNA followed by replication to the chromosome end (break-induced replication, BIR). As BIR from one of the two ends of a DSB would result in a long tract of LOH it suggests BIR is suppressed when DSBs have two ends in order for repair to occur by a more conservative HR mechanism. Recent studies showed that BIR can occur by several rounds of strand invasion, DNA synthesis and dissociation resulting in chromosome rearrangements when dissociation and reinvasion occur within dispersed repeated sequences. Thus template switching during BIR can be highly mutagenic and this process could be important for genome evolution and disease development.
引用
收藏
页码:859 / 864
页数:6
相关论文
共 43 条
[1]   Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing [J].
Adams, MD ;
McVey, M ;
Sekelsky, JJ .
SCIENCE, 2003, 299 (5604) :265-267
[2]  
Bosco G, 1998, GENETICS, V150, P1037
[3]   Template switching: From replication fork repair to genome rearrangements [J].
Branzei, Dana ;
Foiani, Marco .
CELL, 2007, 131 (07) :1228-1230
[4]   Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants [J].
Chen, C ;
Kolodner, RD .
NATURE GENETICS, 1999, 23 (01) :81-85
[5]   Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange [J].
Cortes-Ledesma, Felipe ;
Aguilera, Andres .
EMBO REPORTS, 2006, 7 (09) :919-926
[6]   Nonhomologous end joining in yeast [J].
Daley, JM ;
Palmbos, PL ;
Wu, DL ;
Wilson, TE .
ANNUAL REVIEW OF GENETICS, 2005, 39 :431-451
[7]   RAD51-dependent break-induced replication in yeast [J].
Davis, AP ;
Symington, LS .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (06) :2344-2351
[8]   Telomere maintenance by recombination in human cells [J].
Dunham, MA ;
Neumann, AA ;
Fasching, CL ;
Reddel, RR .
NATURE GENETICS, 2000, 26 (04) :447-450
[9]   Recombinational repair of gaps in DNA is asymmetric in Ustilago maydis and can be explained by a migrating D-loop model [J].
Ferguson, DO ;
Holloman, WK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5419-5424
[10]   Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast [J].
Ira, G ;
Malkova, A ;
Liberi, G ;
Foiani, M ;
Haber, JE .
CELL, 2003, 115 (04) :401-411