Molecular determinants of skeletal muscle mass: getting the "AKT" together

被引:124
作者
Nader, GA [1 ]
机构
[1] Childrens Natl Med Ctr, Res Ctr Genet Med, Washington, DC 20010 USA
关键词
hypertrophy; atrophy; intracellular signaling; exercise; AKT/PKB; FOXO;
D O I
10.1016/j.biocel.2005.02.026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle is the most abundant tissue in the human body and its normal physiology plays a fundamental role in health and disease. During many disease states, a dramatic loss of skeletal muscle mass (atrophy) is observed. In contrast, physical exercise is capable of producing significant increases in muscle mass (hypertrophy). Maintenance of skeletal muscle mass is often viewed as the net result of the balance between two separate processes, namely protein synthesis and protein degradation. However, these two biochemical processes are not occurring independent of each other but they rather appear to be finely coordinated by a web of intricate signaling networks. Such signaling networks are in charge of executing environmental and cellular cues that will ultimate determine whether muscle proteins are synthesized or degraded. In this review, recent findings are discussed demonstrating that the AKTI/FOXOs/Atrogin-1 (MAFbx)/MuRF1 signaling network plays an important role in the progression of skeletal muscle atrophy. These novel findings highlight an important mechanism that coordinates the activation of the protein synthesis machinery with the activation of a genetic program responsible for the degradation of muscle proteins during skeletal muscle atrophy. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1985 / 1996
页数:12
相关论文
共 63 条
[1]   FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J].
Accili, D ;
Arden, KC .
CELL, 2004, 117 (04) :421-426
[2]   Skeletal muscle unweighting: spaceflight and ground-based models [J].
Adams, GR ;
Caiozzo, VJ ;
Baldwin, KM .
JOURNAL OF APPLIED PHYSIOLOGY, 2003, 95 (06) :2185-2201
[3]   Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B alpha [J].
Alessi, DR ;
James, SR ;
Downes, CP ;
Holmes, AB ;
Gaffney, PRJ ;
Reese, CB ;
Cohen, P .
CURRENT BIOLOGY, 1997, 7 (04) :261-269
[4]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[5]   Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B [J].
Anderson, KE ;
Coadwell, J ;
Stephens, LR ;
Hawkins, PT .
CURRENT BIOLOGY, 1998, 8 (12) :684-691
[6]   Role of translocation in the activation and function of protein kinase B [J].
Andjelkovic, M ;
Alessi, DR ;
Meier, R ;
Fernandez, A ;
Lamb, NJC ;
Frech, M ;
Cron, P ;
Cohen, P ;
Lucocq, JM ;
Hemmings, BA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31515-31524
[7]   Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise [J].
Baar, K ;
Esser, K .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 276 (01) :C120-C127
[8]  
Baracos VE, 2001, CANCER, V92, P1669, DOI 10.1002/1097-0142(20010915)92:6+<1669::AID-CNCR1495>3.0.CO
[9]  
2-S
[10]   Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse [J].
Biggs, WH ;
Cavenee, WK ;
Arden, KC .
MAMMALIAN GENOME, 2001, 12 (06) :416-425