Mapping the functional connectivity of anterior cingulate cortex

被引:613
作者
Margulies, Daniel S.
Kelly, A. M. Clare
Uddin, Lucina Q.
Biswal, Bharat B.
Castellanos, F. Xavier
Milham, Michael P.
机构
[1] NYU, Ctr Child Study, Phyllis Green & Randolph Cowen Inst Pediat Neuros, New York, NY 10016 USA
[2] Univ Med & Dent New Jersey, Dept Radiol, Newark, NJ 07101 USA
[3] Nathan S Kline Inst Psychiat Res, Orangeburg, NY 10962 USA
关键词
brain mapping; resting state networks; intrinsic functional activity; anticorrelation;
D O I
10.1016/j.neuroimage.2007.05.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Anterior cingulate cortex (ACC) is a nexus of information processing and regulation in the brain. Reflecting this central role, ACC is structurally and functionally heterogeneous, a fact long appreciated in studies of non-human primates. Human neuroimaging studies also recognize this functional heterogeneity, with meta-analyses and task-based studies demonstrating the existence of motor, cognitive and affective subdivisions. In contrast to task-based approaches, examinations of resting-state functional connectivity enable the characterization of task-independent patterns of correlated activity. in a novel approach to understanding ACC functional segregation, we systematically mapped ACC functional connectivity during rest. We examined patterns of functional connectivity for 16 seed ROIs systematically placed throughout caudal, rostral, and subgenual ACC in each hemisphere. First, our data support the commonly observed rostral/ caudal distinction, but also suggest the existence of a dorsal/ventral functional distinction. For each of these distinctions, more fine-grained patterns of differentiation were observed than commonly appreciated in human imaging studies. Second, we demonstrate the presence of negatively predicted relationships between distinct ACC functional networks. In particular, we highlight negative relationships between rostral ACC-based affective networks (including the "default mode network") and dorsal-caudal ACC-based frontoparietal attention networks. Finally, interhemispheric activations were more strongly correlated between homologous regions than in non-homologous regions. We discuss the implications of our work for understanding ACC function and potential applications to clinical populations. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 58 条
[1]   The anterior cingulate cortex lends a hand in response selection [J].
Awh, E ;
Gehring, WJ .
NATURE NEUROSCIENCE, 1999, 2 (10) :853-854
[2]   Prefrontal regions play a predominant role in imposing an attentional 'set': evidence from fMIRI [J].
Banich, MT ;
Milham, MP ;
Atchley, RA ;
Cohen, NJ ;
Webb, A ;
Wszalek, T ;
Kramer, AF ;
Liang, ZP ;
Barad, V ;
Gullett, D ;
Shah, C ;
Brown, C .
COGNITIVE BRAIN RESEARCH, 2000, 10 (1-2) :1-9
[3]   INTERHEMISPHERIC INTERACTION - HOW DO THE HEMISPHERES DIVIDE-AND-CONQUER A TASK [J].
BANICH, MT ;
BELGER, A .
CORTEX, 1990, 26 (01) :77-94
[4]   The missing link: The role of interhemispheric interaction in attentional processing [J].
Banich, MT .
BRAIN AND COGNITION, 1998, 36 (02) :128-157
[5]   Anterior cingulate cortex and response conflict: Effects of response modality and processing domain [J].
Barch, DM ;
Braver, TS ;
Akbudak, E ;
Conturo, T ;
Ollinger, J ;
Snyder, A .
CEREBRAL CORTEX, 2001, 11 (09) :837-848
[6]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[7]   INVESTIGATIONS OF THE FUNCTIONAL-ANATOMY OF ATTENTION USING THE STROOP TEST [J].
BENCH, CJ ;
FRITH, CD ;
GRASBY, PM ;
FRISTON, KJ ;
PAULESU, E ;
FRACKOWIAK, RSJ ;
DOLAN, RJ .
NEUROPSYCHOLOGIA, 1993, 31 (09) :907-922
[8]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[9]   Conflict monitoring and anterior cingulate cortex: an update [J].
Botvinick, Matthew M. ;
Cohen, Jonathan D. ;
Carter, Cameron S. .
TRENDS IN COGNITIVE SCIENCES, 2004, 8 (12) :539-546
[10]   Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors [J].
Braver, TS ;
Barch, DM ;
Gray, JR ;
Molfese, DL ;
Snyder, A .
CEREBRAL CORTEX, 2001, 11 (09) :825-836