High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws

被引:153
作者
Jiang, GS
Levy, D
Lin, CT
Osher, S
Tadmor, E
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Ecole Normale Super, Dept Math, F-75230 Paris 05, France
[4] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
hyperbolic conservation laws; central schemes; staggered grids;
D O I
10.1137/S0036142997317560
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a general procedure to convert schemes which are based on staggered spatial grids into nonstaggered schemes. This procedure is then used to construct a new family of nonstaggered, central schemes for hyperbolic conservation laws by converting the family of staggered central schemes recently introduced in [H. Nessyahu and E. Tadmor, J. Comput. Phys., 87 (1990), pp. 408-463; X. D. Liu and E. Tadmor, Numer. Math., 79 (1998), pp. 397-425; G. S. Jiang and E. Tadmor, SIAM J. Sci. Comput., 19 (1998), pp. 1892-1917]. These new nonstaggered central schemes retain the desirable properties of simplicity and high resolution, and in particular, they yield Riemann-solver-free recipes which avoid dimensional splitting. Most important, the new central schemes avoid staggered grids and hence are simpler to implement in frameworks which involve complex geometries and boundary conditions.
引用
收藏
页码:2147 / 2168
页数:22
相关论文
共 31 条
[1]  
ARMINJON P, 1995, P 6 INT S CFD LAK TA, V4, P7
[2]   SYSTEMS OF CONSERVATION EQUATIONS WITH A CONVEX EXTENSION [J].
FRIEDRICHS, KO ;
LAX, PD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1971, 68 (08) :1686-+
[3]  
Godlewski E., 1991, HYPERBOLIC SYSTEMS C
[4]  
Godunov SK., 1959, MAT SBORNIK, V89, P271
[5]   UNIFORMLY HIGH-ORDER ACCURATE NONOSCILLATORY SCHEMES .1. [J].
HARTEN, A ;
OSHER, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (02) :279-309
[6]   HIGH-RESOLUTION SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) :357-393
[7]  
HUYNH HT, 1995, 12 AIAA CFD C
[8]   Efficient implementation of weighted ENO schemes [J].
Jiang, GS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) :202-228
[9]   Nonoscillatory central schemes for multidimensional hyperbolic conservation laws [J].
Jiang, GS ;
Tadmor, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :1892-1917
[10]   A fast, high resolution, second-order central scheme for incompressible flows [J].
Kupferman, R ;
Tadmor, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :4848-4852