Molecular dynamics simulations of pentapeptides at interfaces:: Salt bridge and cation-π interactions

被引:111
作者
Aliste, MP [1 ]
MacCallum, JL [1 ]
Tieleman, DP [1 ]
机构
[1] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada
关键词
D O I
10.1021/bi027001j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peptide-membrane interactions are important for understanding the binding, partitioning, and folding of membrane proteins; the activity of antimicrobial and fusion peptides; and a number of other processes. We describe molecular dynamics simulations (10-25 ns) of two pentapeptides Ace-WLXLL (with X = Arg or Lys side chain) (White, S. H., and Wimley, W.C. (1996) Nat. Struct. Biol. 3, 842-848) in water and three different membrane mimetic systems: (i) a water/cyclohexane interface, (ii) water-saturated octanol, and (iii) a solvated dioleoylphosphatidylcholine bilayer. A salt bridge is found between the protonated Arg or Lys side chains with the carboxyl terminus at the three interfaces. In water/cyclohexane, the salt bridge is most exposed to the water phase and least stable. In water/octanol and the lipid bilayer systems, the salt bridge once formed persists throughout the simulations. In the lipid bilayer, the salt bridge is more stable when the peptide penetrates deeper into the bilayer. In one of two peptides, a cation-pi interaction between the Arg and the Trp side chains is stable in the lipid bilayer for about 15 ns before breaking. In all cases, the conformations of the peptides are restricted by their presence at the interface and can be assigned to a few major conformational clusters. Side chains facing the water phase are most mobile. In the lipid bilayer, the peptides remain in the interface area, where they overlap with the carbonyl area of the lipid bilayer and perturb the local density profile of the bilayer. The tryptophan side chain remains in the water-lipid interface, where it interacts with the lipid choline group and forms hydrogen bonds with the ester carbonyl of the lipid and with water in the interface.
引用
收藏
页码:8976 / 8987
页数:12
相关论文
共 55 条
[1]   Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins [J].
Adamian, L ;
Liang, J .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (04) :891-907
[2]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J].
Berger, O ;
Edholm, O ;
Jahnig, F .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2002-2013
[5]  
Chipot C, 1999, PROTEINS, V36, P383
[6]   Molecular dynamics potential of mean force calculations: A study of the toluene-ammonium pi-cation interactions [J].
Chipot, C ;
Maigret, B ;
Pearlman, DA ;
Kollman, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (12) :2998-3005
[7]   Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study [J].
Chipot, C ;
Pohorille, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (46) :11912-11924
[8]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[9]  
Daura X, 1999, PROTEINS, V34, P269, DOI 10.1002/(SICI)1097-0134(19990215)34:3<269::AID-PROT1>3.0.CO
[10]  
2-3