A business cycle model with cubic nonlinearity

被引:44
作者
Puu, T
Sushko, I [1 ]
机构
[1] Natl Acad Sci, Inst Math, UA-01601 Kiev, Ukraine
[2] Umea Univ, Ctr Reg Sci, SE-90187 Umea, Sweden
关键词
D O I
10.1016/S0960-0779(03)00132-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a simple multiplier-accelerator model of the business cycle, including a cubic nonlinearity. The corresponding two dimensional iterative map is represented in terms of its bifurcation diagram in parameter space. A number of bifurcation sequences for attractors and their basins are studied. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:597 / 612
页数:16
相关论文
共 16 条
[1]  
AFRAIMOVICH VS, 1983, INVARIANT 2 DIMENSIO, P3
[2]  
ARNOLD VI, 1986, MODERN PROBLEMS MATH, V5
[3]  
Frisch R, 1933, PROPAGATION PROBLEMS
[4]   A DOUBLE LOGISTIC MAP [J].
GARDINI, L ;
ABRAHAM, R ;
RECORD, RJ ;
FOURNIERPRUNARET, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (01) :145-176
[5]   THE NONLINEAR ACCELERATOR AND THE PERSISTENCE OF BUSINESS CYCLES [J].
Goodwin, R. M. .
ECONOMETRICA, 1951, 19 (01) :1-17
[6]  
Hicks J., 1950, A Contribution to the Theory of the Trade Cycle
[7]  
Iooss G., 1979, Bifurcation of Maps and Applications
[8]   About two mechanisms of reunion of chaotic attractors [J].
Maistrenko, Y ;
Sushko, I ;
Gardini, L .
CHAOS SOLITONS & FRACTALS, 1998, 9 (08) :1373-1390
[9]  
Mira C., 1987, CHAOTIC DYNAMICS
[10]  
Mira C., 1996, Nonlinear Science, DOI DOI 10.1142/2252