Lung CT Image Segmentation Using Deep Neural Networks

被引:198
作者
Ait Skourt, Brahim [1 ]
El Hassani, Abdelhamid [1 ]
Majda, Aicha [1 ]
机构
[1] Fac Sci & Technol Fez, Dept Comp Sci, Fes, Morocco
来源
PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017) | 2018年 / 127卷
关键词
Lung CT; Image Segmentation; Deep Learning; U-net;
D O I
10.1016/j.procs.2018.01.104
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lung CT image segmentation is a necessary initial step for lung image analysis, it is a prerequisite step to provide an accurate lung CT image analysis such as lung cancer detection. In this work, we propose a lung CT image segmentation using the U-net architecture, one of the most used architectures in deep learning for image segmentation. The architecture consists of a contracting path to extract high-level information and a symmetric expanding path that recovers the information needed. This network can be trained end-to-end from very few images and outperforms many methods. Experimental results show an accurate segmentation with 0.9502 Dice-Coefficient index. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:109 / 113
页数:5
相关论文
共 14 条
[1]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[2]  
[Anonymous], 2015, ARXIV151100561
[3]  
Garcia A, 2017, APPR DIGIT GAME STUD, V5, P1
[4]   Brain tumor segmentation with Deep Neural Networks [J].
Havaei, Mohammad ;
Davy, Axel ;
Warde-Farley, David ;
Biard, Antoine ;
Courville, Aaron ;
Bengio, Yoshua ;
Pal, Chris ;
Jodoin, Pierre-Marc ;
Larochelle, Hugo .
MEDICAL IMAGE ANALYSIS, 2017, 35 :18-31
[5]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[6]   Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images [J].
Hu, SY ;
Hoffman, EA ;
Reinhardt, JM .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (06) :490-498
[7]  
Kalinovsky Alexander., 2016, LUNG IMAGE SSGMENTAT
[8]   Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT [J].
Korfiatis, P. ;
Skiadopoulos, S. ;
Sakellaropoulos, P. ;
Kalogeropoulou, C. ;
Costaridou, L. .
BRITISH JOURNAL OF RADIOLOGY, 2007, 80 (960) :996-1005
[9]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[10]   Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume [J].
Nakagomi, Keita ;
Shimizu, Akinobu ;
Kobatake, Hidefumi ;
Yakami, Masahiro ;
Fujimoto, Koji ;
Togashi, Kaori .
MEDICAL IMAGE ANALYSIS, 2013, 17 (01) :62-77