Ellipsoidal approximation of the stability domain of a polynomial

被引:40
作者
Henrion, D [1 ]
Peaucelle, D
Arzelier, D
Sebek, M
机构
[1] CNRS, Lab Anal & Architecture Syst, F-31077 Toulouse, France
[2] Acad Sci Czech Republ, Inst Informat Theory & Automat, Prague 18208, Czech Republic
[3] Czech Tech Univ, Ctr Appl Cybernet, Dept Control Engn, Prague 16627, Czech Republic
关键词
algebraic stability criteria; linear matrix inequalities (LMIs); linear systems; polynomials;
D O I
10.1109/TAC.2003.820161
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The stability domain in the space of coefficients of a polynomial is a nonconvex set in general. In this note, we propose a new convex ellipsoidal inner approximation of this set derived via optimization over linear matrix inequalities. As a by-product, we obtain new simple sufficient conditions for stability that may prove useful in robust control design.
引用
收藏
页码:2255 / 2259
页数:5
相关论文
共 39 条
[1]   PARAMETER SPACE DESIGN OF ROBUST CONTROL-SYSTEMS [J].
ACKERMANN, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (06) :1058-1072
[2]  
Ackermann J., 1993, Robust Control: Systems with Uncertain Physical Parameters
[3]  
Ballamudi RK, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P4360, DOI 10.1109/CDC.1995.478928
[4]  
Barmish B.R., 1994, New Tools for Robustness of Linear Systems
[5]  
Bhattacharyya S., 1995, ROBUST CONTROL PARAM
[6]  
BHATTACHARYYA SP, 1995, NEW TOOLS ROBUSTNESS
[7]   Robustness analysis tools for an uncertainty set obtained by prediction error identification [J].
Bombois, X ;
Gevers, M ;
Scorletti, G ;
Anderson, BDO .
AUTOMATICA, 2001, 37 (10) :1629-1636
[8]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
[9]  
CHAMPAIGN IL, 1999, E WEISSTEINS WORLD M
[10]  
FAM AT, 1989, 1989 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, P1780, DOI 10.1109/ISCAS.1989.100711