Lithium ion capacity of single wall carbon nanotube paper electrodes

被引:89
作者
Landi, Brian J. [1 ]
Ganter, Matthew J. [1 ]
Schauerman, Christopher M. [1 ]
Cress, Cory D. [1 ]
Raffaelle, Ryne P. [1 ]
机构
[1] Rochester Inst Technol, NanoPower Res Labs, Rochester, NY 14623 USA
关键词
D O I
10.1021/jp710921k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical cycling performance of high purity single wall carbon nanotube (SWCNT) paper electrodes has been measured vs lithium metal for a series of electrolyte solvent compositions. The addition of propylene carbonate (PC) into the conventional ethylene carbonate (EC):dimethyl carbonate (DMC) cosolvent mixture enabled a reversible lithium ion capacity of 520 mAh/g for high purity SWCNTs. The free-standing SWCNT electrode (absent of polymer binder or metal substrate support) with this electrolyte combination demonstrates enhanced cycleability, retaining > 95 % of the initial capacity after 10 cycles. The first cycle hysteresis, common in these materials, is shown to vary dramatically with solvent selection and illustrates the importance of the solid-electrolyte-interface (SEI) formation on SWCNT capacity. The effect of galvanostatic charge rate (i.e., C-rate) on lithium ion capacity shows a 2 x improvement [in capacity per current] over reported values for conventional graphite anode materials. These electrochemical results are complemented by a postmortem analysis of the purified SWCNT electrode after lithiation using scanning electron microscopy, X-ray diffraction, Raman, and optical absorption spectroscopy. The results show that the structural integrity and carbonaceous purity of individual SWCNTs is maintained during cycling, while the lithium insertion is accommodated by bundle channel expansion.
引用
收藏
页码:7509 / 7515
页数:7
相关论文
共 63 条
[1]   Design of electrolyte solutions for Li and Li-ion batteries: a review [J].
Aurbach, D ;
Talyosef, Y ;
Markovsky, B ;
Markevich, E ;
Zinigrad, E ;
Asraf, L ;
Gnanaraj, JS ;
Kim, HJ .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :247-254
[2]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[3]   Tunable intertube spacing in single-walled carbon nanotube bundles [J].
Cambedouzou, J ;
Rols, S ;
Bendiab, N ;
Almairac, R ;
Sauvajol, JL ;
Petit, P ;
Mathis, C ;
Mirebeau, I ;
Johnson, M .
PHYSICAL REVIEW B, 2005, 72 (04)
[4]   In situ Raman scattering studies of alkali-doped single wall carbon nanotubes [J].
Claye, A ;
Rahman, S ;
Fischer, JE ;
Sirenko, A ;
Sumanasekera, GU ;
Eklund, PC .
CHEMICAL PHYSICS LETTERS, 2001, 333 (1-2) :16-22
[5]   Solid-state electrochemistry of the Li single wall carbon nanotube system [J].
Claye, AS ;
Fischer, JE ;
Huffman, CB ;
Rinzler, AG ;
Smalley, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (08) :2845-2852
[6]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[7]   Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy [J].
DiLeo, Roberta A. ;
Landi, Brian J. ;
Raffaelle, Ryne P. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
[8]   Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band [J].
Dillon, AC ;
Parilla, PA ;
Alleman, JL ;
Gennett, T ;
Jones, KM ;
Heben, MJ .
CHEMICAL PHYSICS LETTERS, 2005, 401 (4-6) :522-528
[9]   Controlling single-wall nanotube diameters with variation in laser pulse power [J].
Dillon, AC ;
Parilla, PA ;
Alleman, JL ;
Perkins, JD ;
Heben, MJ .
CHEMICAL PHYSICS LETTERS, 2000, 316 (1-2) :13-18
[10]   Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes [J].
Dubot, P ;
Cenedese, P .
PHYSICAL REVIEW B, 2001, 63 (24)