Symplectic integrators: An introduction

被引:40
作者
Donnelly, D [1 ]
Rogers, E
机构
[1] Siena Coll, Dept Phys, Loudonville, NY 12211 USA
[2] Siena Coll, Dept Math, Loudonville, NY 12211 USA
关键词
D O I
10.1119/1.2034523
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Symplectic integrators very nearly conserve the total energy and are particularly useful when treating long times. We demonstrate some of the properties of these integrators by exploring the structure of first-, second-, and fourth-order symplectic integrators and apply them to the simple harmonic oscillator. We consider numeric, geometric, and analytic aspects of the integrators with particular attention to the computed energies. (c) 2005 American Association of Physics Teachers.
引用
收藏
页码:938 / 945
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 2001, COMPUTATIONAL PHYS I
[2]  
[Anonymous], GEOMETRIC NUMERICAL
[3]  
[Anonymous], 4 U NOTR DAM DEP MAT
[4]  
[Anonymous], 1991, CELEST MECH DYN ASTR
[5]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[6]   A SYMPLECTIC INTEGRATION ALGORITHM FOR SEPARABLE HAMILTONIAN FUNCTIONS [J].
CANDY, J ;
ROZMUS, W .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (01) :230-256
[7]   STABLE-SOLUTIONS USING THE EULER APPROXIMATION [J].
CROMER, A .
AMERICAN JOURNAL OF PHYSICS, 1981, 49 (05) :455-459
[8]   Symplectic splitting methods for rigid body molecular dynamics [J].
Dullweber, A ;
Leimkuhler, B ;
McLachlan, R .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (15) :5840-5851
[9]   Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars [J].
Edvardsson, S ;
Karlsson, KG ;
Engholm, M .
ASTRONOMY & ASTROPHYSICS, 2002, 384 (02) :689-701
[10]  
GOULD H, 1996, INTRO COMPUTER SIMUL, P123