A simple way to compute the existence region of 1D chaotic attractors in 2D-maps

被引:12
作者
Celka, P
机构
[1] Department of Electrical Engineering, Chaire des Circuits et Systèmes, Swiss Federal Institute of Technology
来源
PHYSICA D | 1996年 / 90卷 / 03期
关键词
chaos; 2D-map; synchronization; attractors; Lyapunov exponent;
D O I
10.1016/0167-2789(95)00243-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a new approach to computing the existence region of self-synchronized states in the error feedback synchronization scheme for discrete-time chaotic systems. The overall system is modelled by a triangular 2D-map in which the nonlinearity is a symmetric tent map. We compute the stability region D-c of one dimensional chaotic attractors using the boundaries in the bifurcation diagram of the 1D-symmetric tent map, also called critical lines. We show that with a modest number of these critical lines (about 16), the approximation of D-c is quite accurate.
引用
收藏
页码:235 / 241
页数:7
相关论文
共 23 条
[1]   ON FEEDBACK-CONTROL OF CHAOTIC CONTINUOUS-TIME SYSTEMS [J].
CHEN, GR ;
DONG, XN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (09) :591-601
[2]   ELEMENTARY EXPLANATION OF BOUNDARY SHADING IN CHAOTIC-ATTRACTOR PLOTS FOR THE FEIGENBAUM MAP AND THE CIRCLE MAP [J].
EIDSON, J ;
FLYNN, S ;
HOLM, C ;
WEEKS, D ;
FOX, RF .
PHYSICAL REVIEW A, 1986, 33 (04) :2809-2812
[3]   CHAOTIC ATTRACTORS IN CRISIS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1982, 48 (22) :1507-1510
[4]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[5]  
GROSSMANN S, 1977, Z NATURFORSCH A, V32, P1353
[6]   SUPPRESSION OF CHAOS THROUGH CHANGES IN THE SYSTEM VARIABLES - TRANSIENT CHAOS AND CRISES [J].
GUEMEZ, J ;
GUTIERREZ, JM ;
IGLESIAS, A ;
MATIAS, MA .
PHYSICA D, 1994, 79 (2-4) :164-173
[7]   CONTROL OF CHAOS IN UNIDIMENSIONAL MAPS [J].
GUEMEZ, J ;
MATIAS, MA .
PHYSICS LETTERS A, 1993, 181 (01) :29-32
[8]  
GUMOVSKI I, 1980, CEPADUES EDITIONS TO
[9]  
HASLER M, 1993, P WORKSHOP NONLINEAR
[10]   IMAGES OF THE CRITICAL-POINTS OF NONLINEAR MAPS [J].
JENSEN, RV ;
MYERS, CR .
PHYSICAL REVIEW A, 1985, 32 (02) :1222-1224